25.3 Graphics25.5 Integral Representations

§25.4 Reflection Formulas

For s\neq 0,1,

25.4.1\mathop{\zeta\/}\nolimits\!\left(1-s\right)=2(2\pi)^{{-s}}\mathop{\cos\/}\nolimits\!\left(\tfrac{1}{2}\pi s\right)\mathop{\Gamma\/}\nolimits\!\left(s\right)\mathop{\zeta\/}\nolimits\!\left(s\right),
25.4.2\mathop{\zeta\/}\nolimits\!\left(s\right)=2(2\pi)^{{s-1}}\mathop{\sin\/}\nolimits\!\left(\tfrac{1}{2}\pi s\right)\mathop{\Gamma\/}\nolimits\!\left(1-s\right)\mathop{\zeta\/}\nolimits\!\left(1-s\right).

Equivalently,

25.4.3\mathop{\xi\/}\nolimits\!\left(s\right)=\mathop{\xi\/}\nolimits\!\left(1-s\right),

where \mathop{\xi\/}\nolimits\!\left(s\right) is Riemann’s \mathop{\xi\/}\nolimits-function, defined by:

25.4.4\mathop{\xi\/}\nolimits\!\left(s\right)=\tfrac{1}{2}s(s-1)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}s\right)\pi^{{-s/2}}\mathop{\zeta\/}\nolimits\!\left(s\right).