Index
Notations
Search
Need Help?
How to Cite
Customize
Annotate
UnAnnotate
About the Project
⇑
18
Orthogonal Polynomials
⇑
Classical Orthogonal Polynomials
⇐
18.7
Interrelations and Limit Relations
18.9
Recurrence Relations and Derivatives
⇒
§18.8
Differential Equations
Notes:
For Table
18.8.1
, Rows 2, 3, 5, 9–10, 11–12, see
Szegö (
1975
, (4.2.4), (4.24.2), (4.7.5), (5.1.2), (5.5.2))
, respectively; Row 4 is the special case
of Row 2; Rows 6, 7, 8 are the special cases
,
,
, respectively, of Row 2.
Permalink:
http://dlmf.nist.gov/18.8
See Table
18.8.1
and also Table 22.6 of
Abramowitz and Stegun (
1964
)
.
Table 18.8.1:
Classical OP’s: differential equations
.
0
1
0
1
0
0
0
0
0
0
1
0
1
0
1
0
1
0
Symbols:
: Chebyshev polynomial of the first kind
,
: Chebyshev polynomial of the second kind
,
: Hermite polynomial
,
: Hermite polynomial
,
: Jacobi polynomial
,
: Legendre polynomial
,
: cosine function
,
: base of exponential function
,
: Laguerre (or generalized Laguerre) polynomial
,
: sine function
,
: ultraspherical (or Gegenbauer) polynomial
,
: nonnegative integer
and
: real variable
A&S Ref:
22.6.1, 22.6.4, 22.6.5, 22.6.8, 22.6.15, 22.6.18, 22.6.19, 22.6.20, 22.6.21
Keywords:
Chebyshev polynomials
,
Hermite polynomials
,
Jacobi polynomials
,
Laguerre polynomials
,
Legendre polynomials
,
classical orthogonal polynomials
,
differential equations
,
ultraspherical polynomials
Referenced by:
§18.8
,
§18.8
Permalink:
http://dlmf.nist.gov/18.8.T1