7.5 Interrelations7.7 Integral Representations

§7.6 Series Expansions

Contents

§7.6(i) Power Series

7.6.1\mathop{\mathrm{erf}\/}\nolimits z=\frac{2}{\sqrt{\pi}}\sum _{{n=0}}^{\infty}\frac{(-1)^{n}z^{{2n+1}}}{n!(2n+1)},
7.6.2\mathop{\mathrm{erf}\/}\nolimits z=\frac{2}{\sqrt{\pi}}e^{{-z^{2}}}\sum _{{n=0}}^{\infty}\frac{2^{n}z^{{2n+1}}}{1\cdot 3\cdots(2n+1)},
7.6.3\mathop{w\/}\nolimits\!\left(z\right)=\sum _{{n=0}}^{\infty}\frac{(iz)^{n}}{\mathop{\Gamma\/}\nolimits\!\left(\frac{1}{2}n+1\right)}.
7.6.4\mathop{C\/}\nolimits\!\left(z\right)=\sum _{{n=0}}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{{2n}}}{(2n)!(4n+1)}z^{{4n+1}},
7.6.5\mathop{C\/}\nolimits\!\left(z\right)=\mathop{\cos\/}\nolimits\!\left(\tfrac{1}{2}\pi z^{2}\right)\sum _{{n=0}}^{\infty}\frac{(-1)^{n}\pi^{{2n}}}{1\cdot 3\cdots(4n+1)}z^{{4n+1}}+\mathop{\sin\/}\nolimits\!\left(\tfrac{1}{2}\pi z^{2}\right)\sum _{{n=0}}^{\infty}\frac{(-1)^{n}\pi^{{2n+1}}}{1\cdot 3\cdots(4n+3)}z^{{4n+3}}.
7.6.6\mathop{S\/}\nolimits\!\left(z\right)=\sum _{{n=0}}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{{2n+1}}}{(2n+1)!(4n+3)}z^{{4n+3}},
7.6.7\mathop{S\/}\nolimits\!\left(z\right)=-\mathop{\cos\/}\nolimits\!\left(\tfrac{1}{2}\pi z^{2}\right)\sum _{{n=0}}^{\infty}\frac{(-1)^{n}\pi^{{2n+1}}}{1\cdot 3\cdots(4n+3)}z^{{4n+3}}+\mathop{\sin\/}\nolimits\!\left(\tfrac{1}{2}\pi z^{2}\right)\sum _{{n=0}}^{\infty}\frac{(-1)^{n}\pi^{{2n}}}{1\cdot 3\cdots(4n+1)}z^{{4n+1}}.

The series in this subsection and in §7.6(ii) converge for all finite values of |z|.

§7.6(ii) Expansions in Series of Spherical Bessel Functions

For further results see Luke (1969b, pp. 57–58).