7.6 Series Expansions7.8 Inequalities

§7.7 Integral Representations

Contents

§7.7(i) Error Functions and Dawson’s Integral

Integrals of the type \int e^{{-z^{2}}}R(z)dz, where R(z) is an arbitrary rational function, can be written in closed form in terms of the error functions and elementary functions.

7.7.1\mathop{\mathrm{erfc}\/}\nolimits z=\frac{2}{\pi}e^{{-z^{2}}}\int _{0}^{\infty}\frac{e^{{-z^{2}t^{2}}}}{t^{2}+1}dt,|\mathop{\mathrm{ph}\/}\nolimits z|\leq\frac{1}{4}\pi,
7.7.2\mathop{w\/}\nolimits\!\left(z\right)=\frac{1}{\pi i}\int _{{-\infty}}^{\infty}\frac{e^{{-t^{2}}}dt}{t-z}=\frac{2z}{\pi i}\int _{0}^{\infty}\frac{e^{{-t^{2}}}dt}{t^{2}-z^{2}},\imagpart{z}>0.
7.7.3\int _{0}^{\infty}e^{{-at^{2}+2izt}}dt=\frac{1}{2}\sqrt{\frac{\pi}{a}}e^{{-z^{2}/a}}+\frac{i}{\sqrt{a}}\mathop{F\/}\nolimits\!\left(\frac{z}{\sqrt{a}}\right),\realpart{a}>0.
7.7.4\int _{0}^{\infty}\frac{e^{{-at}}}{\sqrt{t+z^{2}}}dt=\sqrt{\frac{\pi}{a}}e^{{az^{2}}}\mathop{\mathrm{erfc}\/}\nolimits\!\left(\sqrt{a}z\right),\realpart{a}>0, \realpart{z}>0.
7.7.5\int _{0}^{1}\frac{e^{{-at^{2}}}}{t^{2}+1}dt=\frac{\pi}{4}e^{a}\left(1-(\mathop{\mathrm{erf}\/}\nolimits\sqrt{a})^{2}\right),\realpart{a}>0.
7.7.6\int _{x}^{\infty}e^{{-(at^{2}+2bt+c)}}dt=\frac{1}{2}\sqrt{\frac{\pi}{a}}e^{{(b^{2}-ac)/a}}\mathop{\mathrm{erfc}\/}\nolimits\!\left(\sqrt{a}x+\frac{b}{\sqrt{a}}\right),\realpart{a}>0.
7.7.7\int _{x}^{\infty}e^{{-a^{2}t^{2}-(b^{2}/t^{2})}}dt=\frac{\sqrt{\pi}}{4a}\left(e^{{2ab}}\mathop{\mathrm{erfc}\/}\nolimits\!\left(ax+(b/x)\right)+e^{{-2ab}}\mathop{\mathrm{erfc}\/}\nolimits\!\left(ax-(b/x)\right)\right),x>0, |\mathop{\mathrm{ph}\/}\nolimits a|<\tfrac{1}{4}\pi.
7.7.8\int _{0}^{\infty}e^{{-a^{2}t^{2}-(b^{2}/t^{2})}}dt=\frac{\sqrt{\pi}}{2a}e^{{-2ab}},|\mathop{\mathrm{ph}\/}\nolimits a|<\tfrac{1}{4}\pi, |\mathop{\mathrm{ph}\/}\nolimits b|<\tfrac{1}{4}\pi.
7.7.9\int _{0}^{x}\mathop{\mathrm{erf}\/}\nolimits tdt=x\mathop{\mathrm{erf}\/}\nolimits x+\frac{1}{\sqrt{\pi}}\left(e^{{-x^{2}}}-1\right).

§7.7(ii) Auxiliary Functions

§7.7(iii) Compendia

For other integral representations see Erdélyi et al. (1954a, vol. 1, pp. 265–267, 270), Ng and Geller (1969), Oberhettinger (1974, pp. 246–248), and Oberhettinger and Badii (1973, pp. 371–377).