29.4 Graphics29.6 Fourier Series

§29.5 Special Cases and Limiting Forms

29.5.1\mathop{a^{{m}}_{{\nu}}\/}\nolimits\!\left(0\right)=\mathop{b^{{m}}_{{\nu}}\/}\nolimits\!\left(0\right)=m^{2},
29.5.2\mathop{\mathit{Ec}^{{0}}_{{\nu}}\/}\nolimits\!\left(z,0\right)=2^{{-\frac{1}{2}}},
29.5.3
\mathop{\mathit{Ec}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,0\right)=\mathop{\cos\/}\nolimits\!\left(m(\tfrac{1}{2}\pi-z)\right),m\geq 1,
\mathop{\mathit{Es}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,0\right)=\mathop{\sin\/}\nolimits\!\left(m(\tfrac{1}{2}\pi-z)\right),m\geq 1.

Let \mu=\max{(\nu-m,0)}. Then

29.5.4\lim _{{k\to 1-}}\mathop{a^{{m}}_{{\nu}}\/}\nolimits\!\left(k^{2}\right)=\lim _{{k\to 1-}}\mathop{b^{{m+1}}_{{\nu}}\/}\nolimits\!\left(k^{2}\right)=\nu(\nu+1)-\mu^{2},
29.5.5{\lim _{{k\to 1-}}\frac{\mathop{\mathit{Ec}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)}{\mathop{\mathit{Ec}^{{m}}_{{\nu}}\/}\nolimits\!\left(0,k^{2}\right)}=\lim _{{k\to 1-}}\frac{\mathop{\mathit{Es}^{{m+1}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)}{\mathop{\mathit{Es}^{{m+1}}_{{\nu}}\/}\nolimits\!\left(0,k^{2}\right)}}=\frac{1}{(\mathop{\cosh\/}\nolimits z)^{{\mu}}}\mathop{F\/}\nolimits\!\left({\tfrac{1}{2}\mu-\tfrac{1}{2}\nu,\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+\tfrac{1}{2}\atop\tfrac{1}{2}};{\mathop{\tanh\/}\nolimits^{{2}}}z\right),m even,
29.5.6\lim _{{k\to 1-}}\frac{\mathop{\mathit{Ec}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)}{\left.\ifrac{d\mathop{\mathit{Ec}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)}{dz}\right|_{{z=0}}}=\lim _{{k\to 1-}}\frac{\mathop{\mathit{Es}^{{m+1}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)}{\left.\ifrac{d\mathop{\mathit{Es}^{{m+1}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)}{dz}\right|_{{z=0}}}=\frac{\mathop{\tanh\/}\nolimits z}{(\mathop{\cosh\/}\nolimits z)^{\mu}}\mathop{F\/}\nolimits\!\left({\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2},\tfrac{1}{2}\mu+\tfrac{1}{2}\nu+1\atop\tfrac{3}{2}};{\mathop{\tanh\/}\nolimits^{{2}}}z\right),m odd,

where \mathop{F\/}\nolimits is the hypergeometric function; see §15.2(i).

If k\to 0+ and \nu\to\infty in such a way that k^{2}\nu(\nu+1)=4\theta (a positive constant), then

29.5.7
\lim\mathop{\mathit{Ec}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)=\mathop{\mathrm{ce}_{{m}}\/}\nolimits\!\left(\tfrac{1}{2}\pi-z,\theta\right),
\lim\mathop{\mathit{Es}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)=\mathop{\mathrm{se}_{{m}}\/}\nolimits\!\left(\tfrac{1}{2}\pi-z,\theta\right),

where \mathop{\mathrm{ce}_{{m}}\/}\nolimits\!\left(z,\theta\right) and \mathop{\mathrm{se}_{{m}}\/}\nolimits\!\left(z,\theta\right) are Mathieu functions; see §28.2(vi).