What's New
About the Project
NIST
29 Lamé FunctionsLamé Functions

§29.5 Special Cases and Limiting Forms

29.5.1 aνm(0)=bνm(0)=m2,
29.5.2 Ecν0(z,0)=2-12,
29.5.3 Ecνm(z,0) =cos(m(12π-z)),
m1,
Esνm(z,0) =sin(m(12π-z)),
m1.

Let μ=max(ν-m,0). Then

29.5.4 limk1-aνm(k2)=limk1-bνm+1(k2)=ν(ν+1)-μ2,
29.5.5 limk1-Ecνm(z,k2)Ecνm(0,k2)=limk1-Esνm+1(z,k2)Esνm+1(0,k2)=1(coshz)μF(12μ-12ν,12μ+12ν+1212;tanh2z),
m even,
29.5.6 limk1-Ecνm(z,k2)dEcνm(z,k2)/dz|z=0=limk1-Esνm+1(z,k2)dEsνm+1(z,k2)/dz|z=0=tanhz(coshz)μF(12μ-12ν+12,12μ+12ν+132;tanh2z),
m odd,

where F is the hypergeometric function; see §15.2(i).

If k0+ and ν in such a way that k2ν(ν+1)=4θ (a positive constant), then

29.5.7 limEcνm(z,k2) =cem(12π-z,θ),
limEsνm(z,k2) =sem(12π-z,θ),

where cem(z,θ) and sem(z,θ) are Mathieu functions; see §28.2(vi).