29.7 Asymptotic Expansions29.9 Stability

§29.8 Integral Equations

Let w(z) be any solution of (29.2.1) of period 4\!\mathop{K\/}\nolimits\!, w_{2}(z) be a linearly independent solution, and \mathop{\mathscr{W}\/}\nolimits\left\{ w,w_{2}\right\} denote their Wronskian. Also let x be defined by

29.8.1x=k^{2}\mathop{\mathrm{sn}\/}\nolimits\left(z,k\right)\mathop{\mathrm{sn}\/}\nolimits\left(z_{1},k\right)\mathop{\mathrm{sn}\/}\nolimits\left(z_{2},k\right)\mathop{\mathrm{sn}\/}\nolimits\left(z_{3},k\right)-\frac{k^{2}}{{k^{{\prime}}}^{2}}\mathop{\mathrm{cn}\/}\nolimits\left(z,k\right)\mathop{\mathrm{cn}\/}\nolimits\left(z_{1},k\right)\mathop{\mathrm{cn}\/}\nolimits\left(z_{2},k\right)\mathop{\mathrm{cn}\/}\nolimits\left(z_{3},k\right)+\frac{1}{{k^{{\prime}}}^{2}}\mathop{\mathrm{dn}\/}\nolimits\left(z,k\right)\mathop{\mathrm{dn}\/}\nolimits\left(z_{1},k\right)\mathop{\mathrm{dn}\/}\nolimits\left(z_{2},k\right)\mathop{\mathrm{dn}\/}\nolimits\left(z_{3},k\right),

where z,z_{1},z_{2},z_{3} are real, and \mathop{\mathrm{sn}\/}\nolimits, \mathop{\mathrm{cn}\/}\nolimits, \mathop{\mathrm{dn}\/}\nolimits are the Jacobian elliptic functions (§22.2). Then

29.8.2\mu w(z_{1})w(z_{2})w(z_{3})=\int _{{-2\!\mathop{K\/}\nolimits\!}}^{{2\!\mathop{K\/}\nolimits\!}}\mathop{\mathsf{P}_{{\nu}}\/}\nolimits\!\left(x\right)w(z)dz,

where \mathop{\mathsf{P}_{{\nu}}\/}\nolimits\!\left(x\right) is the Ferrers function of the first kind (§14.3(i)),

29.8.3\mu=\frac{2\sigma\tau}{\mathop{\mathscr{W}\/}\nolimits\left\{ w,w_{2}\right\}},

and \sigma (= \pm 1) and \tau are determined by

29.8.4
w(z+2\!\mathop{K\/}\nolimits\!)=\sigma w(z),
w_{2}(z+2\!\mathop{K\/}\nolimits\!)=\tau w(z)+\sigma w_{2}(z).

For further integral equations see Arscott (1964a), Erdélyi et al. (1955, §15.5.3), Shail (1980), Sleeman (1968a), and Volkmer (1982, 1983, 1984).