21.1 Special Notation21.3 Symmetry and Quasi-Periodicity

§21.2 Definitions

Contents

§21.2(i) Riemann Theta Functions

21.2.1\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)=\sum _{{\mathbf{n}\in\Integer^{g}}}e^{{2\pi i\left(\frac{1}{2}\mathbf{n}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}}.

This g-tuple Fourier series converges absolutely and uniformly on compact sets of the \mathbf{z} and \boldsymbol{{\Omega}} spaces; hence \mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right) is an analytic function of (each element of) \mathbf{z} and (each element of) \boldsymbol{{\Omega}}. \mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right) is also referred to as a theta function with g components, a g-dimensional theta function or as a genus g theta function.

For numerical purposes we use the scaled Riemann theta function \mathop{\hat{\theta}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right), defined by (Deconinck et al. (2004)),

21.2.2\mathop{\hat{\theta}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)=e^{{-\pi[\imagpart{\mathbf{z}}]\cdot[\imagpart{\boldsymbol{{\Omega}}}]^{{-1}}\cdot[\imagpart{\mathbf{z}}]}}\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right).

\mathop{\hat{\theta}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right) is a bounded nonanalytic function of \mathbf{z}. Many applications involve quotients of Riemann theta functions: the exponential factor then disappears. See also §21.10(i).

§21.2(ii) Riemann Theta Functions with Characteristics

Let \boldsymbol{{\alpha}},\boldsymbol{{\beta}}\in\Real^{g}. Define

21.2.5\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{\alpha}}}{\boldsymbol{{\beta}}}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)=\sum _{{\mathbf{n}\in\Integer^{g}}}e^{{2\pi i\left(\frac{1}{2}[\mathbf{n}+\boldsymbol{{\alpha}}]\cdot\boldsymbol{{\Omega}}\cdot[\mathbf{n}+\boldsymbol{{\alpha}}]+[\mathbf{n}+\boldsymbol{{\alpha}}]\cdot[\mathbf{z}+\boldsymbol{{\beta}}]\right)}}.

This function is referred to as a Riemann theta function with characteristics \begin{bmatrix}\boldsymbol{{\alpha}}\\
\boldsymbol{{\beta}}\end{bmatrix}. It is a translation of the Riemann theta function (21.2.1), multiplied by an exponential factor:

21.2.6\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{\alpha}}}{\boldsymbol{{\beta}}}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)=e^{{2\pi i\left(\frac{1}{2}\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha}}+\boldsymbol{{\alpha}}\cdot[\mathbf{z}+\boldsymbol{{\beta}}]\right)}}\mathop{\theta\/}\nolimits\!\left(\mathbf{z}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}\middle|\boldsymbol{{\Omega}}\right),

and

21.2.7\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{0}}}{\boldsymbol{{0}}}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)=\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right).

Characteristics whose elements are either 0 or \tfrac{1}{2} are called half-period characteristics. For given \boldsymbol{{\Omega}}, there are 2^{{2g}} g-dimensional Riemann theta functions with half-period characteristics.

§21.2(iii) Relation to Classical Theta Functions