20.1 Special Notation20.3 Graphics

§20.2 Definitions and Periodic Properties

Contents

§20.2(i) Fourier Series

Corresponding expansions for {\mathop{\theta _{{j}}\/}\nolimits^{{\prime}}}\!\left(z\middle|\tau\right), j=1,2,3,4, can be found by differentiating (20.2.1)–(20.2.4) with respect to z.

§20.2(ii) Periodicity and Quasi-Periodicity

For fixed \tau, each \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right) is an entire function of z with period 2\pi; \mathop{\theta _{{1}}\/}\nolimits\!\left(z\middle|\tau\right) is odd in z and the others are even. For fixed z, each of \ifrac{\mathop{\theta _{{1}}\/}\nolimits\!\left(z\middle|\tau\right)}{\mathop{\sin\/}\nolimits z}, \ifrac{\mathop{\theta _{{2}}\/}\nolimits\!\left(z\middle|\tau\right)}{\mathop{\cos\/}\nolimits z}, \mathop{\theta _{{3}}\/}\nolimits\!\left(z\middle|\tau\right), and \mathop{\theta _{{4}}\/}\nolimits\!\left(z\middle|\tau\right) is an analytic function of \tau for \imagpart{\tau}>0, with a natural boundary \imagpart{\tau}=0, and correspondingly, an analytic function of q for \left|q\right|<1 with a natural boundary \left|q\right|=1.

The four points (0,\pi,\pi+\tau\pi,\tau\pi) are the vertices of the fundamental parallelogram in the z-plane; see Figure 20.2.1. The points

20.2.5z_{{m,n}}=(m+n\tau)\pi,m,n\in\Integer,

are the lattice points. The theta functions are quasi-periodic on the lattice:

20.2.6\mathop{\theta _{{1}}\/}\nolimits\!\left(z+(m+n\tau)\pi\middle|\tau\right)=(-1)^{{m+n}}q^{{-n^{2}}}e^{{-2inz}}\mathop{\theta _{{1}}\/}\nolimits\!\left(z\middle|\tau\right),
20.2.7\mathop{\theta _{{2}}\/}\nolimits\!\left(z+(m+n\tau)\pi\middle|\tau\right)=(-1)^{m}q^{{-n^{2}}}e^{{-2inz}}\mathop{\theta _{{2}}\/}\nolimits\!\left(z\middle|\tau\right),
20.2.8\mathop{\theta _{{3}}\/}\nolimits\!\left(z+(m+n\tau)\pi\middle|\tau\right)=q^{{-n^{2}}}e^{{-2inz}}\mathop{\theta _{{3}}\/}\nolimits\!\left(z\middle|\tau\right),
20.2.9\mathop{\theta _{{4}}\/}\nolimits\!\left(z+(m+n\tau)\pi\middle|\tau\right)=(-1)^{n}q^{{-n^{2}}}e^{{-2inz}}\mathop{\theta _{{4}}\/}\nolimits\!\left(z\middle|\tau\right).
See accompanying textSee accompanying text
Figure 20.2.1: z-plane. Fundamental parallelogram. Left-hand diagram is the rectangular case (\tau purely imaginary); right-hand diagram is the general case. \bullet zeros of \mathop{\theta _{{1}}\/}\nolimits\!\left(z\middle|\tau\right), \blacksquare zeros of \mathop{\theta _{{2}}\/}\nolimits\!\left(z\middle|\tau\right), \blacktriangle zeros of \mathop{\theta _{{3}}\/}\nolimits\!\left(z\middle|\tau\right), \blacklozenge zeros of \mathop{\theta _{{4}}\/}\nolimits\!\left(z\middle|\tau\right). Magnify

§20.2(iii) Translation of the Argument by Half-Periods

With

20.2.10M\equiv M(z|\tau)=e^{{iz+(i\pi\tau/4)}},
20.2.11\mathop{\theta _{{1}}\/}\nolimits\!\left(z\middle|\tau\right)=-\mathop{\theta _{{2}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi\middle|\tau\right)=-iM\mathop{\theta _{{4}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi\tau\middle|\tau\right)=-iM\mathop{\theta _{{3}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi+\tfrac{1}{2}\pi\tau\middle|\tau\right),
20.2.12\mathop{\theta _{{2}}\/}\nolimits\!\left(z\middle|\tau\right)=\mathop{\theta _{{1}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi\middle|\tau\right)=M\mathop{\theta _{{3}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi\tau\middle|\tau\right)=M\mathop{\theta _{{4}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi+\tfrac{1}{2}\pi\tau\middle|\tau\right),
20.2.13\mathop{\theta _{{3}}\/}\nolimits\!\left(z\middle|\tau\right)=\mathop{\theta _{{4}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi\middle|\tau\right)=M\mathop{\theta _{{2}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi\tau\middle|\tau\right)=M\mathop{\theta _{{1}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi+\tfrac{1}{2}\pi\tau\middle|\tau\right),
20.2.14\mathop{\theta _{{4}}\/}\nolimits\!\left(z\middle|\tau\right)=\mathop{\theta _{{3}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi\middle|\tau\right)=-iM\mathop{\theta _{{1}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi\tau\middle|\tau\right)=iM\mathop{\theta _{{2}}\/}\nolimits\!\left(z+\tfrac{1}{2}\pi+\tfrac{1}{2}\pi\tau\middle|\tau\right).

§20.2(iv) z-Zeros

For m,n\in\Integer, the z-zeros of \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right), j=1,2,3,4, are (m+n\tau)\pi, (m+\tfrac{1}{2}+n\tau)\pi, (m+\tfrac{1}{2}+(n+\tfrac{1}{2})\tau)\pi, (m+(n+\tfrac{1}{2})\tau)\pi respectively.