About the Project
36 Integrals with Coalescing SaddlesProperties

§36.10 Differential Equations

  1. §36.10(i) Equations for ΨK(𝐱)
  2. §36.10(ii) Partial Derivatives with Respect to the xn
  3. §36.10(iii) Operator Equations
  4. §36.10(iv) Partial z-Derivatives

§36.10(i) Equations for ΨK(𝐱)

In terms of the normal form (36.2.1) the ΨK(𝐱) satisfy the operator equation

36.10.1 ΦK(ix1;𝐱)ΨK(𝐱)=0,

or explicitly,

36.10.2 K+1ΨK(𝐱)x1K+1+m=1K(i)mK2(mxmK+2)m1ΨK(𝐱)x1m1=0.

Special Cases

K=1, fold: (36.10.1) becomes Airy’s equation (§9.2(i))

36.10.3 2Ψ1x2x3Ψ1=0.

K=2, cusp:

36.10.4 3Ψ2x312yΨ2xi4xΨ2=0.

K=3, swallowtail:

36.10.5 4Ψ3x435z2Ψ3x22i5yΨ3x+15xΨ3=0.

§36.10(ii) Partial Derivatives with Respect to the xn

36.10.6 lnΨKxmln=in(lm)mnΨKxlmn,
1mK, 1lK.

Special Cases

K=1, fold: (36.10.6) is an identity.

§36.10(iii) Operator Equations

In terms of the normal forms (36.2.2) and (36.2.3), the Ψ(U)(𝐱) satisfy the following operator equations

36.10.11 Φs(U)(ix,iy;𝐱)Ψ(U)(𝐱) =0,
Φt(U)(ix,iy;𝐱)Ψ(U)(𝐱) =0,


36.10.12 Φs(U)(s,t;𝐱) =sΦ(U)(s,t;𝐱),
Φt(U)(s,t;𝐱) =tΦ(U)(s,t;𝐱).


36.10.13 62Ψ(E)xy2izΨ(E)y+yΨ(E)=0,
36.10.14 3(2Ψ(E)x22Ψ(E)y2)+2izΨ(E)xxΨ(E)=0.
36.10.15 32Ψ(H)x2+izΨ(H)yxΨ(H)=0,
36.10.16 32Ψ(H)y2+izΨ(H)xyΨ(H)=0.

§36.10(iv) Partial z-Derivatives