In this subsection and are positive constants.
1.7.1 | |||
Equality holds iff , ; .
Conversely, if for all such that , then .
For , , , ,
1.7.2 | |||
Equality holds iff , ; .
Conversely, if for all such that , then .
For , , ,
1.7.3 | |||
The direction of the inequality is reversed, that is, , when . Equality holds iff , ; .
In this subsection and () are real constants that can be , provided that the corresponding integrals converge. Also and are constants that are not simultaneously zero.
1.7.4 | |||
Equality holds iff for all .
For , , , ,
1.7.5 | |||
Equality holds iff for all .
For , , ,
1.7.6 | |||
The direction of the inequality is reversed, that is, , when . Equality holds iff for all .
For the notation, see §1.2(iv).
1.7.7 | |||
with equality iff .
1.7.8 | |||
with equality iff , or and some .
1.7.9 | |||
, | |||
with equality iff , or and some .