6.5 Further Interrelations6.7 Integral Representations

§6.6 Power Series

6.6.1\mathop{\mathrm{Ei}\/}\nolimits\!\left(x\right)=\EulerConstant+\mathop{\ln\/}\nolimits x+\sum _{{n=1}}^{\infty}\frac{x^{n}}{n!\thinspace n},x>0.
6.6.2\mathop{E_{1}\/}\nolimits\!\left(z\right)=-\EulerConstant-\mathop{\ln\/}\nolimits z-\sum _{{n=1}}^{\infty}\frac{(-1)^{n}z^{n}}{n!\thinspace n}.
6.6.3\mathop{E_{1}\/}\nolimits\!\left(z\right)=-\mathop{\ln\/}\nolimits z+e^{{-z}}\sum _{{n=0}}^{\infty}\frac{z^{n}}{n!}\mathop{\psi\/}\nolimits\!\left(n+1\right),

where \mathop{\psi\/}\nolimits denotes the logarithmic derivative of the gamma function (§5.2(i)).

6.6.4\mathop{\mathrm{Ein}\/}\nolimits\!\left(z\right)=\sum _{{n=1}}^{\infty}\frac{(-1)^{{n-1}}z^{n}}{n!\thinspace n},
6.6.5\mathop{\mathrm{Si}\/}\nolimits\!\left(z\right)=\sum _{{n=0}}^{\infty}\frac{(-1)^{n}z^{{2n+1}}}{(2n+1)!(2n+1)},
6.6.6\mathop{\mathrm{Ci}\/}\nolimits\!\left(z\right)=\EulerConstant+\mathop{\ln\/}\nolimits z+\sum _{{n=1}}^{\infty}\frac{(-1)^{n}z^{{2n}}}{(2n)!(2n)}.

The series in this section converge for all finite values of x and |z|.