14.7 Integer Degree and Order14.9 Connection Formulas

§14.8 Behavior at Singularities

Contents

§14.8(i) x\to 1- or x\to-1+

As x\to 1-,

where \EulerConstant is Euler’s constant (§5.2(ii)). In the next three relations \realpart{\mu}>0.

14.8.4\mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)\sim\frac{1}{2}\mathop{\cos\/}\nolimits\!\left(\mu\pi\right)\mathop{\Gamma\/}\nolimits\!\left(\mu\right)\left(\frac{2}{1-x}\right)^{{\mu/2}},\mu\neq\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2},\dots,
14.8.5\mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)\sim(-1)^{{\mu+(1/2)}}\frac{\pi\mathop{\Gamma\/}\nolimits\!\left(\nu+\mu+1\right)}{2\mathop{\Gamma\/}\nolimits\!\left(\mu+1\right)\mathop{\Gamma\/}\nolimits\!\left(\nu-\mu+1\right)}\left(\frac{1-x}{2}\right)^{{\mu/2}},\mu=\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2},\dots, \nu\pm\mu\neq-1,-2,-3,\dots,
14.8.6\mathop{\mathsf{Q}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)\sim\frac{\mathop{\Gamma\/}\nolimits\!\left(\mu\right)\mathop{\Gamma\/}\nolimits\!\left(\nu-\mu+1\right)}{2\mathop{\Gamma\/}\nolimits\!\left(\nu+\mu+1\right)}\left(\frac{2}{1-x}\right)^{{\mu/2}},\nu\pm\mu\neq-1,-2,-3,\dots.

The behavior of \mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) and \mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) as x\to-1+ follows from the above results and the connection formulas (14.9.8) and (14.9.10).