10.7 Limiting Forms10.9 Integral Representations

§10.8 Power Series

For \mathop{J_{{\nu}}\/}\nolimits\!\left(z\right) see (10.2.2) and (10.4.1). When \nu is not an integer the corresponding expansions for \mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right), \mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right), and \mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right) are obtained by combining (10.2.2) with (10.2.3), (10.4.7), and (10.4.8).

For negative values of n use (10.4.1).

The corresponding results for \mathop{{H^{{(1)}}_{{n}}}\/}\nolimits\!\left(z\right) and \mathop{{H^{{(2)}}_{{n}}}\/}\nolimits\!\left(z\right) are obtained via (10.4.3) with \nu=n.

10.8.3\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)\mathop{J_{{\mu}}\/}\nolimits\!\left(z\right)=(\tfrac{1}{2}z)^{{\nu+\mu}}\sum _{{k=0}}^{\infty}\frac{(\nu+\mu+k+1)_{k}(-\tfrac{1}{4}z^{2})^{k}}{k!\mathop{\Gamma\/}\nolimits\!\left(\nu+k+1\right)\mathop{\Gamma\/}\nolimits\!\left(\mu+k+1\right)}.