11.5 Integral Representations11.7 Integrals and Sums

§11.6 Asymptotic Expansions

Contents

§11.6(i) Large |z|, Fixed \nu

11.6.1\mathop{\mathbf{K}_{{\nu}}\/}\nolimits\!\left(z\right)\sim\frac{1}{\pi}\sum _{{k=0}}^{\infty}\frac{\mathop{\Gamma\/}\nolimits\!\left(k+\tfrac{1}{2}\right)(\tfrac{1}{2}z)^{{\nu-2k-1}}}{\mathop{\Gamma\/}\nolimits\!\left(\nu+\tfrac{1}{2}-k\right)},|\mathop{\mathrm{ph}\/}\nolimits z|\leq\pi-\delta,

where \delta is an arbitrary small positive constant. If the series on the right-hand side of (11.6.1) is truncated after m(\geq 0) terms, then the remainder term R_{m}(z) is \mathop{O\/}\nolimits\!\left(z^{{\nu-2m-1}}\right). If \nu is real, z is positive, and m+\tfrac{1}{2}-\nu\geq 0, then R_{m}(z) is of the same sign and numerically less than the first neglected term.

For re-expansions of the remainder terms in (11.6.1) and (11.6.2), see Dingle (1973, p. 445).

§11.6(ii) Large |\nu|, Fixed z

More fully, the series (11.2.1) and (11.2.2) can be regarded as generalized asymptotic expansions (§2.1(v)).

§11.6(iii) Large |\nu|, Fixed z/\nu

For the corresponding result for \mathop{\mathbf{H}_{{\nu}}\/}\nolimits\!\left(\lambda\nu\right) use (11.2.5) and (10.19.6). See also Watson (1944, p. 336).

For fixed \lambda (>0)

11.6.9\mathop{\mathbf{L}_{{\nu}}\/}\nolimits\!\left(\lambda\nu\right)\sim\mathop{I_{{\nu}}\/}\nolimits\!\left(\lambda\nu\right),|\mathop{\mathrm{ph}\/}\nolimits\nu|\leq\tfrac{1}{2}\pi-\delta,

and for an estimate of the relative error in this approximation see Watson (1944, p. 336).