About the Project

.02年世界杯吉祥物_『网址:687.vii』世界杯假球黑幕视频_b5p6v3_gqyiq6mwc

AdvancedHelp

(0.002 seconds)

21—30 of 132 matching pages

21: 18.16 Zeros
§18.16(vii) Discriminants
18.16.19 Disc ( P n ( α , β ) ) = 2 n ( n 1 ) j = 1 n j j 2 n + 2 ( j + α ) j 1 ( j + β ) j 1 ( n + j + α + β ) n j .
18.16.20 Disc ( L n ( α ) ) = j = 1 n j j 2 n + 2 ( j + α ) j 1 .
18.16.21 Disc ( H n ) = 2 3 2 n ( n 1 ) j = 1 n j j .
22: 1.10 Functions of a Complex Variable
§1.10(vii) Inverse Functions
1.10.12 f ( z ) = w
1.10.13 F ( w ) = z 0 + n = 1 F n ( w w 0 ) n
1.10.14 g ( F ( w ) ) = g ( z 0 ) + n = 1 G n ( w w 0 ) n ,
1.10.16 F ( w ) = z 0 + n = 1 F n ( w w 0 ) n / μ
23: Bibliography Q
  • C. K. Qu and R. Wong (1999) “Best possible” upper and lower bounds for the zeros of the Bessel function J ν ( x ) . Trans. Amer. Math. Soc. 351 (7), pp. 2833–2859.
  • 24: 32.7 Bäcklund Transformations
    §32.7(vii) Sixth Painlevé Equation
    32.7.33 z 1 = 1 / z 0 ,
    32.7.34 z 2 = 1 z 0 ,
    32.7.35 z 3 = 1 / z 0 ,
    32.7.40 𝒮 2 : w 2 ( z 2 ) = 1 w 0 ( z 0 ) ,
    25: Bibliography T
  • N. M. Temme (1993) Asymptotic estimates of Stirling numbers. Stud. Appl. Math. 89 (3), pp. 233–243.
  • N. M. Temme (2015) Asymptotic Methods for Integrals. Series in Analysis, Vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.
  • J. S. Thompson (1996) High Speed Numerical Integration of Fermi Dirac Integrals. Master’s Thesis, Naval Postgraduate School, Monterey, CA.
  • E. C. Titchmarsh (1962b) The Theory of Functions. 2nd edition, Oxford University Press, Oxford.
  • L. N. Trefethen and D. Bau (1997) Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 26: 8.17 Incomplete Beta Functions
    8.17.5 I x ( m , n m + 1 ) = j = m n ( n j ) x j ( 1 x ) n j , m , n positive integers; 0 x < 1 .
    §8.17(vii) Addendum to 8.17(i) Definitions and Basic Properties
    8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
    27: 12.10 Uniform Asymptotic Expansions for Large Parameter
    These cases are treated in §§12.10(vii)12.10(viii). …
    12.10.7 ξ = 1 2 t t 2 1 1 2 ln ( t + t 2 1 ) .
    12.10.23 η = 1 2 arccos t 1 2 t 1 t 2 ,
    §12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
    12.10.40 ϕ ( ζ ) = ( ζ t 2 1 ) 1 4 .
    28: 1.15 Summability Methods
    1.15.50 𝐼 α f ( x ) = k = 0 k ! Γ ( k + α + 1 ) a k x k + α .
    §1.15(vii) Fractional Derivatives
    1.15.51 𝐷 α f ( x ) = d n d x n 𝐼 n α f ( x ) ,
    1.15.52 𝐷 k 𝐼 α = 𝐷 n 𝐼 α + n k , k = 1 , 2 , , n .
    1.15.53 𝐷 α 𝐷 β = 𝐷 α + β .
    29: 11.10 Anger–Weber Functions
    §11.10(vii) Special Values
    11.10.25 𝐉 ν ( 0 ) = sin ( π ν ) π ν , 𝐄 ν ( 0 ) = 1 cos ( π ν ) π ν .
    11.10.26 𝐄 0 ( z ) = 𝐇 0 ( z ) , 𝐄 1 ( z ) = 2 π 𝐇 1 ( z ) .
    11.10.29 𝐉 n ( z ) = J n ( z ) , n .
    30: 13.2 Definitions and Basic Properties
    §13.2(vii) Connection Formulas
    13.2.39 M ( a , b , z ) = e z M ( b a , b , z ) ,
    13.2.40 U ( a , b , z ) = z 1 b U ( a b + 1 , 2 b , z ) .
    13.2.41 1 Γ ( b ) M ( a , b , z ) = e a π i Γ ( b a ) U ( a , b , z ) + e ± ( b a ) π i Γ ( a ) e z U ( b a , b , e ± π i z ) .
    13.2.42 U ( a , b , z ) = Γ ( 1 b ) Γ ( a b + 1 ) M ( a , b , z ) + Γ ( b 1 ) Γ ( a ) z 1 b M ( a b + 1 , 2 b , z ) .