11.1 Special Notation11.3 Graphics

§11.2 Definitions

Contents

§11.2(i) Power-Series Expansions

Principal values correspond to principal values of (\tfrac{1}{2}z)^{{\nu+1}}; compare §4.2(i).

The expansions (11.2.1) and (11.2.2) are absolutely convergent for all finite values of z. The functions z^{{-\nu-1}}\mathop{\mathbf{H}_{{\nu}}\/}\nolimits\!\left(z\right) and z^{{-\nu-1}}\mathop{\mathbf{L}_{{\nu}}\/}\nolimits\!\left(z\right) are entire functions of z and \nu.

11.2.3\mathop{\mathbf{H}_{{0}}\/}\nolimits\!\left(z\right)=\frac{2}{\pi}\left(z-\frac{z^{3}}{1^{2}\cdot 3^{2}}+\frac{z^{5}}{1^{2}\cdot 3^{2}\cdot 5^{2}}-\cdots\right),
11.2.4\mathop{\mathbf{L}_{{0}}\/}\nolimits\!\left(z\right)=\frac{2}{\pi}\left(z+\frac{z^{3}}{1^{2}\cdot 3^{2}}+\frac{z^{5}}{1^{2}\cdot 3^{2}\cdot 5^{2}}+\cdots\right).

Principal values of \mathop{\mathbf{K}_{{\nu}}\/}\nolimits\!\left(z\right) and \mathop{\mathbf{M}_{{\nu}}\/}\nolimits\!\left(z\right) correspond to principal values of the functions on the right-hand sides of (11.2.5) and (11.2.6).

Unless indicated otherwise, \mathop{\mathbf{H}_{{\nu}}\/}\nolimits\!\left(z\right), \mathop{\mathbf{K}_{{\nu}}\/}\nolimits\!\left(z\right), \mathop{\mathbf{L}_{{\nu}}\/}\nolimits\!\left(z\right), and \mathop{\mathbf{M}_{{\nu}}\/}\nolimits\!\left(z\right) assume their principal values throughout the DLMF.

§11.2(iii) Numerically Satisfactory Solutions

In this subsection A and B are arbitrary constants.

When z=x, 0<x<\infty, and \realpart{\nu}\geq 0, numerically satisfactory general solutions of (11.2.7) are given by

(11.2.11) applies when x is bounded, and (11.2.12) applies when x is bounded away from the origin.

When \realpart{\nu}\geq 0, numerically satisfactory general solutions of (11.2.9) are given by

(11.2.16) applies when |\mathop{\mathrm{ph}\/}\nolimits z|\leq\tfrac{1}{2}\pi with |z| bounded. (11.2.17) applies when |\mathop{\mathrm{ph}\/}\nolimits z|\leq\tfrac{1}{2}\pi with z bounded away from the origin.