13.7 Asymptotic Expansions for Large Argument13.9 Zeros

§13.8 Asymptotic Approximations for Large Parameters

Contents

§13.8(i) Large |b|, Fixed a and z

When the foregoing results are combined with Kummer’s transformation (13.2.39), an approximation is obtained for the case when |b| is large, and |b-a| and |z| are bounded.

§13.8(ii) Large b and z, Fixed a and b/z

Let \lambda=z/b>0 and \zeta=\sqrt{2(\lambda-1-\mathop{\ln\/}\nolimits\lambda)} with \mathop{\mathrm{sign}\/}\nolimits\!\left(\zeta\right)=\mathop{\mathrm{sign}\/}\nolimits\!\left(\lambda-1\right). Then

13.8.4\mathop{M\/}\nolimits\!\left(a,b,z\right)\sim b^{{\frac{1}{2}a}}e^{{\frac{1}{4}\zeta^{2}b}}\left(\lambda\left(\frac{\lambda-1}{\zeta}\right)^{{a-1}}\mathop{U\/}\nolimits\!\left(a-\tfrac{1}{2},-\zeta\sqrt{b}\right)+\left(\lambda\left(\frac{\lambda-1}{\zeta}\right)^{{a-1}}-\left(\frac{\zeta}{\lambda-1}\right)^{{a}}\right)\frac{\mathop{U\/}\nolimits\!\left(a-\tfrac{3}{2},-\zeta\sqrt{b}\right)}{\zeta\sqrt{b}}\right)

and

13.8.5\mathop{U\/}\nolimits\!\left(a,b,z\right)\sim b^{{-\frac{1}{2}a}}e^{{\frac{1}{4}\zeta^{2}b}}\left(\lambda\left(\frac{\lambda-1}{\zeta}\right)^{{a-1}}\mathop{U\/}\nolimits\!\left(a-\tfrac{1}{2},\zeta\sqrt{b}\right)-\left(\lambda\left(\frac{\lambda-1}{\zeta}\right)^{{a-1}}-\left(\frac{\zeta}{\lambda-1}\right)^{{a}}\right)\frac{\mathop{U\/}\nolimits\!\left(a-\tfrac{3}{2},\zeta\sqrt{b}\right)}{\zeta\sqrt{b}}\right)

as b\to\infty, uniformly in compact \lambda-intervals of (0,\infty) and compact real a-intervals. For the parabolic cylinder function \mathop{U\/}\nolimits see §12.2, and for an extension to an asymptotic expansion see Temme (1978).

To obtain approximations for \mathop{M\/}\nolimits\!\left(a,b,z\right) and \mathop{U\/}\nolimits\!\left(a,b,z\right) that hold as b\to\infty, with a>\tfrac{1}{2}-b and z>0 combine (13.14.4), (13.14.5) with §13.20(i).

Also, more complicated—but more powerful—uniform asymptotic approximations can be obtained by combining (13.14.4), (13.14.5) with §§13.20(iii) and 13.20(iv).

For other asymptotic expansions for large b and z see López and Pagola (2010).

§13.8(iii) Large a

For the notation see §§10.2(ii), 10.25(ii), and 2.8(iv).

When a\to+\infty with b (\leq 1) fixed,

13.8.8\mathop{U\/}\nolimits\!\left(a,b,x\right)=\frac{2e^{{\frac{1}{2}x}}}{\mathop{\Gamma\/}\nolimits\!\left(a\right)}\left(\sqrt{\frac{2}{\beta}\mathop{\tanh\/}\nolimits\!\left(\frac{w}{2}\right)}\left(\frac{1-e^{{-w}}}{\beta}\right)^{{-b}}\beta^{{1-b}}\mathop{K_{{1-b}}\/}\nolimits\!\left(2\beta a\right)+a^{{-1}}\left(\frac{a^{{-1}}+\beta}{1+\beta}\right)^{{1-b}}e^{{-2\beta a}}\mathop{O\/}\nolimits\!\left(1\right)\right),

where w=\mathop{\mathrm{arccosh}\/}\nolimits\!\left(1+(2a)^{{-1}}x\right), and \beta=\ifrac{(w+\mathop{\sinh\/}\nolimits w)}{2}. (13.8.8) holds uniformly with respect to x\in[0,\infty). For the case b>1 the transformation (13.2.40) can be used.

For an extension to an asymptotic expansion complete with error bounds see Temme (1990b), and for related results see §13.21(i).

For asymptotic approximations to \mathop{M\/}\nolimits\!\left(a,b,x\right) and \mathop{U\/}\nolimits\!\left(a,b,x\right) as a\to-\infty that hold uniformly with respect to x\in(0,\infty) and bounded positive values of (b-1)/\left|a\right|, combine (13.14.4), (13.14.5) with §§13.21(ii), 13.21(iii).