12.8 Recurrence Relations and Derivatives12.10 Uniform Asymptotic Expansions for Large Parameter

§12.9 Asymptotic Expansions for Large Variable

Contents

§12.9(i) Poincaré-Type Expansions

Throughout this subsection \delta is an arbitrary small positive constant.

As z\to\infty

12.9.1\mathop{U\/}\nolimits\!\left(a,z\right)\sim e^{{-\frac{1}{4}z^{2}}}z^{{-a-\frac{1}{2}}}\sum _{{s=0}}^{\infty}(-1)^{s}\frac{\left(\frac{1}{2}+a\right)_{{2s}}}{s!(2z^{2})^{s}},|\mathop{\mathrm{ph}\/}\nolimits z|\leq\tfrac{3}{4}\pi-\delta(<\tfrac{3}{4}\pi) ,
12.9.2\mathop{V\/}\nolimits\!\left(a,z\right)\sim\sqrt{\frac{2}{\pi}}e^{{\frac{1}{4}z^{2}}}z^{{a-\frac{1}{2}}}\sum _{{s=0}}^{\infty}\frac{\left(\frac{1}{2}-a\right)_{{2s}}}{s!(2z^{2})^{s}},|\mathop{\mathrm{ph}\/}\nolimits z|\leq\tfrac{1}{4}\pi-\delta(<\tfrac{1}{4}\pi) .
12.9.3\mathop{U\/}\nolimits\!\left(a,z\right)\sim e^{{-\frac{1}{4}z^{2}}}z^{{-a-\frac{1}{2}}}\sum _{{s=0}}^{\infty}(-1)^{s}\frac{\left(\frac{1}{2}+a\right)_{{2s}}}{s!(2z^{2})^{s}}\pm i\frac{\sqrt{2\pi}}{\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}+a\right)}e^{{\mp i\pi a}}e^{{\frac{1}{4}z^{2}}}z^{{a-\frac{1}{2}}}\sum _{{s=0}}^{\infty}\frac{\left(\tfrac{1}{2}-a\right)_{{2s}}}{s!(2z^{2})^{s}},\tfrac{1}{4}\pi+\delta\leq\pm\mathop{\mathrm{ph}\/}\nolimits z\leq\tfrac{5}{4}\pi-\delta ,
12.9.4\mathop{V\/}\nolimits\!\left(a,z\right)\sim\sqrt{\frac{2}{\pi}}e^{{\frac{1}{4}z^{2}}}z^{{a-\frac{1}{2}}}\sum _{{s=0}}^{\infty}\frac{\left(\tfrac{1}{2}-a\right)_{{2s}}}{s!(2z^{2})^{s}}\pm\frac{i}{\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}-a\right)}e^{{-\frac{1}{4}z^{2}}}z^{{-a-\frac{1}{2}}}\sum _{{s=0}}^{\infty}(-1)^{s}\frac{\left(\tfrac{1}{2}+a\right)_{{2s}}}{s!(2z^{2})^{s}},-\tfrac{1}{4}\pi+\delta\leq\pm\mathop{\mathrm{ph}\/}\nolimits z\leq\tfrac{3}{4}\pi-\delta.

§12.9(ii) Bounds and Re-Expansions for the Remainder Terms

Bounds and re-expansions for the error term in (12.9.1) can be obtained by use of (12.7.14) and §§13.7(ii), 13.7(iii). Corresponding results for (12.9.2) can be obtained via (12.2.20).