About the Project

.世界杯小组赛抽签出线_『网址:687.vii』14年阿根廷世界杯成绩_b5p6v3_2022年11月29日9时32分58秒_iwusqq8gw

AdvancedHelp

(0.003 seconds)

11—20 of 241 matching pages

11: Bibliography W
  • J. H. Wilkinson (1988) The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis. Oxford Science Publications, The Clarendon Press, Oxford University Press, Oxford.
  • J. Wimp (1964) A class of integral transforms. Proc. Edinburgh Math. Soc. (2) 14, pp. 33–40.
  • J. Wimp (1984) Computation with Recurrence Relations. Pitman, Boston, MA.
  • G. Wolf (2008) On the asymptotic behavior of the Fourier coefficients of Mathieu functions. J. Res. Nat. Inst. Standards Tech. 113 (1), pp. 11–15.
  • R. Wong (1982) Quadrature formulas for oscillatory integral transforms. Numer. Math. 39 (3), pp. 351–360.
  • 12: 34.9 Graphical Method
    For an account of this method see Brink and Satchler (1993, Chapter VII). For specific examples of the graphical method of representing sums involving the 3 j , 6 j , and 9 j symbols, see Varshalovich et al. (1988, Chapters 11, 12) and Lehman and O’Connell (1973, §3.3).
    13: Bibliography M
  • A. J. MacLeod (2002a) Asymptotic expansions for the zeros of certain special functions. J. Comput. Appl. Math. 145 (2), pp. 261–267.
  • B. Markman (1965) Contribution no. 14. The Riemann zeta function. BIT 5, pp. 138–141.
  • C. S. Meijer (1946) On the G -function. VII, VIII. Nederl. Akad. Wetensch., Proc. 49, pp. 1063–1072, 1165–1175 = Indagationes Math. 8, 661–670, 713–723 (1946).
  • L. M. Milne-Thomson (1950) Jacobian Elliptic Function Tables. Dover Publications Inc., New York.
  • L. Moser and M. Wyman (1958b) Stirling numbers of the second kind. Duke Math. J. 25 (1), pp. 29–43.
  • 14: Bibliography H
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • G. H. Hardy (1952) A Course of Pure Mathematics. 10th edition, Cambridge University Press.
  • P. Henrici (1974) Applied and Computational Complex Analysis. Vol. 1: Power Series—Integration—Conformal Mapping—Location of Zeros. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York.
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • J. Humblet (1984) Analytical structure and properties of Coulomb wave functions for real and complex energies. Ann. Physics 155 (2), pp. 461–493.
  • 15: 9.18 Tables
  • Corless et al. (1992) gives the real and imaginary parts of β k for k = 1 ( 1 ) 13 ; 14S.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • Gil et al. (2003c) tabulates the only positive zero of Gi ( z ) , the first 10 negative real zeros of Gi ( z ) and Gi ( z ) , and the first 10 complex zeros of Gi ( z ) , Gi ( z ) , Hi ( z ) , and Hi ( z ) . Precision is 11 or 12S.

  • §9.18(vii) Generalized Airy Functions
    16: 10 Bessel Functions
    17: 18.16 Zeros
    For an asymptotic expansion of x n , m as n that applies uniformly for m = 1 , 2 , , 1 2 n , see Olver (1959, §14(i)). …
    §18.16(vii) Discriminants
    18.16.19 Disc ( P n ( α , β ) ) = 2 n ( n 1 ) j = 1 n j j 2 n + 2 ( j + α ) j 1 ( j + β ) j 1 ( n + j + α + β ) n j .
    18.16.20 Disc ( L n ( α ) ) = j = 1 n j j 2 n + 2 ( j + α ) j 1 .
    18.16.21 Disc ( H n ) = 2 3 2 n ( n 1 ) j = 1 n j j .
    18: 3.6 Linear Difference Equations
    In practice, however, problems of severe instability often arise and in §§3.6(ii)3.6(vii) we show how these difficulties may be overcome. …
    Table 3.6.1: Weber function w n = 𝐄 n ( 1 ) computed by Olver’s algorithm.
    n p n e n e n / ( p n p n + 1 ) w n
    14 0.39792 611 ×10¹⁴ 0.19555 304 ×10¹³ 0.44167 174 ×10⁻¹⁶ 0.327 92 861 ¯ ×10⁻²
    §3.6(vii) Linear Difference Equations of Other Orders
    3.6.17 a n w n + 1 b n w n = d n .
    3.6.18 a n , k w n + k + a n , k 1 w n + k 1 + + a n , 0 w n = d n ,
    19: Bibliography C
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • S. M. Candel (1981) An algorithm for the Fourier-Bessel transform. Comput. Phys. Comm. 23 (4), pp. 343–353.
  • B. C. Carlson (2011) Permutation symmetry for theta functions. J. Math. Anal. Appl. 378 (1), pp. 42–48.
  • N. B. Christensen (1990) Optimized fast Hankel transform filters. Geophysical Prospecting 38 (5), pp. 545–568.
  • P. Cornille (1972) Computation of Hankel transforms. SIAM Rev. 14 (2), pp. 278–285.
  • 20: Software Index