28.3 Graphics28.5 Second Solutions \mathop{\mathrm{fe}_{{n}}\/}\nolimits, \mathop{\mathrm{ge}_{{n}}\/}\nolimits

§28.4 Fourier Series

Contents

§28.4(i) Definitions

The Fourier series of the periodic Mathieu functions converge absolutely and uniformly on all compact sets in the z-plane. For n=0,1,2,3,\dots,

§28.4(ii) Recurrence Relations

§28.4(iii) Normalization

28.4.92\left(A^{{2n}}_{{0}}(q)\right)^{2}+\sum _{{m=1}}^{{\infty}}\left(A^{{2n}}_{{2m}}(q)\right)^{2}=1,

Ambiguities in sign are resolved by (28.4.13)–(28.4.16) when q=0, and by continuity for the other values of q.

§28.4(iv) Case q=0

28.4.13
A^{{0}}_{{0}}(0)=1/\sqrt{2},\quad A^{{2n}}_{{2n}}(0)=1,n>0,
A^{{2n}}_{{2m}}(0)=0,n\neq m,
28.4.14
A^{{2n+1}}_{{2n+1}}(0)=1,
A^{{2n+1}}_{{2m+1}}(0)=0,n\neq m,
28.4.15
B^{{2n+1}}_{{2n+1}}(0)=1,
B^{{2n+1}}_{{2m+1}}(0)=0,n\neq m,
28.4.16
B^{{2n+2}}_{{2n+2}}(0)=1,
B^{{2n+2}}_{{2m+2}}(0)=0,n\neq m.

§28.4(v) Change of Sign of q

§28.4(vi) Behavior for Small q

For further terms and expansions see Meixner and Schäfke (1954, p. 122) and McLachlan (1947, §3.33).