§28.4 Fourier Series
Contents
- §28.4(i) Definitions
- §28.4(ii) Recurrence Relations
- §28.4(iii) Normalization
- §28.4(iv) Case

- §28.4(v) Change of Sign of

- §28.4(vi) Behavior for Small

- §28.4(vii) Asymptotic Forms for Large

§28.4(i) Definitions
The Fourier series of the periodic Mathieu functions converge absolutely and
uniformly on all compact sets in the
-plane. For
,
28.4.1
28.4.2
28.4.3
28.4.4
§28.4(ii) Recurrence Relations
28.4.5
,
,
,
.
28.4.6
,
,
,
.
28.4.7
,
,
,
.
28.4.8
,
,
,
§28.4(iii) Normalization
§28.4(iv) Case
28.4.13

,

,
28.4.14

,
28.4.15

,
28.4.16

.
§28.4(v) Change of Sign of
28.4.17
28.4.18
28.4.19
28.4.20
§28.4(vi) Behavior for Small
For fixed
and fixed
,
28.4.21
28.4.22
28.4.23
§28.4(vii) Asymptotic Forms for Large
As
, with fixed
(
) and fixed
,
28.4.24
28.4.25
28.4.26
28.4.27
For the basic solutions
and
see §28.2(ii).





