About the Project

matrix exponential

AdvancedHelp

(0.002 seconds)

21—30 of 35 matching pages

21: 18.39 Applications in the Physical Sciences
The discrete variable representations (DVR) analysis is simplest when based on the classical OP’s with their analytically known recursion coefficients (Table 3.5.17_5), or those non-classical OP’s which have analytically known recursion coefficients, making stable computation of the x i and w i , from the J-matrix as in §3.5(vi), straightforward. …, the J-matrix elements) as in Gautschi (1968), Golub and Welsch (1969), Gordon (1968). …
§18.39(iv) Coulomb–Pollaczek Polynomials and J-Matrix Methods
Discretized and Continuum Expansions of Scattering Eigenfunctions in terms of Pollaczek Polynomials: J-matrix Theory
As this follows from the three term recursion of (18.39.46) it is referred to as the J-Matrix approach, see (3.5.31), to single and multi-channel scattering numerics. …
22: 32.8 Rational Solutions
32.8.8 m = 0 p m ( z ) λ m = exp ( z λ 4 3 λ 3 ) .
32.8.10 τ n ( z ) = 𝒲 { p 1 ( z ) , p 3 ( z ) , , p 2 n 1 ( z ) } .
23: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
where f ^ ( λ n ) = 1 π 0 π f ( y ) e 2 i n y d y = f , ϕ exp ( n ) , being that of (1.8.3) and (1.8.4). … this being a matrix element of the resolvent F ( T ) = ( z T ) 1 , this being a key quantity in many parts of physics and applied math, quantum scattering theory being a simple example, see Newton (2002, Ch. 7). … This is accomplished by the variable change x x e i θ , in , which rotates the continuous spectrum 𝝈 c 𝝈 c e 2 i θ and the branch cut of (1.18.66) into the lower half complex plain by the angle 2 θ , with respect to the unmoved branch point at λ = 0 ; thus, providing access to resonances on the higher Riemann sheet should θ be large enough to expose them. … … In unusual cases N = , even for all , such as in the case of the Schrödinger–Coulomb problem ( V = r 1 ) discussed in §18.39 and §33.14, where the point spectrum actually accumulates at the onset of the continuum at λ = 0 , implying an essential singularity, as well as a branch point, in matrix elements of the resolvent, (1.18.66). …
24: Bibliography B
  • C. Bingham, T. Chang, and D. Richards (1992) Approximating the matrix Fisher and Bingham distributions: Applications to spherical regression and Procrustes analysis. J. Multivariate Anal. 41 (2), pp. 314–337.
  • P. Bleher and A. Its (1999) Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. of Math. (2) 150 (1), pp. 185–266.
  • D. M. Bressoud (1999) Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture. Cambridge University Press, Cambridge.
  • J. T. Broad and W. P. Reinhardt (1976) One- and two-electron photoejection from H : A multichannel J -matrix calculation. Phys. Rev. A 14, pp. 2159–2173.
  • R. W. Butler and A. T. A. Wood (2002) Laplace approximations for hypergeometric functions with matrix argument. Ann. Statist. 30 (4), pp. 1155–1177.
  • 25: 18.36 Miscellaneous Polynomials
    §18.36(iv) Orthogonal Matrix Polynomials
    These are matrix-valued polynomials that are orthogonal with respect to a square matrix of measures on the real line. Classes of such polynomials have been found that generalize the classical OP’s in the sense that they satisfy second order matrix differential equations with coefficients independent of the degree. … implying that, for n k , the orthogonality of the L n ( k ) ( x ) with respect to the Laguerre weight function x k e x , x [ 0 , ) . …
    18.36.3 W ^ k ( x ) = x k e x ( x + k ) 2 , k > 0 , x [ 0 , ) .
    26: Errata
  • Chapter 18 Additions

    The following additions were made in Chapter 18:

    • Section 18.2

      In Subsection 18.2(i), Equation (18.2.1_5); the paragraph title “Orthogonality on Finite Point Sets” has been changed to “Orthogonality on Countable Sets”, and there are minor changes in the presentation of the final paragraph, including a new equation (18.2.4_5). The presentation of Subsection 18.2(iii) has changed, Equation (18.2.5_5) was added and an extra paragraph on standardizations has been included. The presentation of Subsection 18.2(iv) has changed and it has been expanded with two extra paragraphs and several new equations, (18.2.9_5), (18.2.11_1)–(18.2.11_9). Subsections 18.2(v) (with (18.2.12_5), (18.2.14)–(18.2.17)) and 18.2(vi) (with (18.2.17)–(18.2.20)) have been expanded. New subsections, 18.2(vii)18.2(xii), with Equations (18.2.21)–(18.2.46),

    • Section 18.3

      A new introduction, minor changes in the presentation, and three new paragraphs.

    • Section 18.5

      Extra details for Chebyshev polynomials, and Equations (18.5.4_5), (18.5.11_1)–(18.5.11_4), (18.5.17_5).

    • Section 18.8

      Line numbers and two extra rows were added to Table 18.8.1.

    • Section 18.9

      Subsection 18.9(i) has been expanded, and 18.9(iii) has some additional explanation. Equations (18.9.2_1), (18.9.2_2), (18.9.18_5) and Table 18.9.2 were added.

    • Section 18.12

      Three extra generating functions, (18.12.2_5), (18.12.3_5), (18.12.17).

    • Section 18.14

      Equation (18.14.3_5). New subsection, 18.14(iv), with Equations (18.14.25)–(18.14.27).

    • Section 18.15

      Equation (18.15.4_5).

    • Section 18.16

      The title of Subsection 18.16(iii) was changed from “Ultraspherical and Legendre” to “Ultraspherical, Legendre and Chebyshev”. New subsection, 18.16(vii) Discriminants, with Equations (18.16.19)–(18.16.21).

    • Section 18.17

      Extra explanatory text at many places and seven extra integrals (18.17.16_5), (18.17.21_1)–(18.17.21_3), (18.17.28_5), (18.17.34_5), (18.17.41_5).

    • Section 18.18

      Extra explanatory text at several places and the title of Subsection 18.18(iv) was changed from “Connection Formulas” to “Connection and Inversion Formulas”.

    • Section 18.19

      A new introduction.

    • Section 18.21

      Equation (18.21.13).

    • Section 18.25

      Extra explanatory text in Subsection 18.25(i) and the title of Subsection 18.25(ii) was changed from “Weights and Normalizations: Continuous Cases” to “Weights and Standardizations: Continuous Cases”.

    • Section 18.26

      In Subsection 18.26(i) an extra paragraph on dualities has been included, with Equations (18.26.4_1), (18.26.4_2).

    • Section 18.27

      Extra text at the start of this section and twenty seven extra formulas, (18.27.4_1), (18.27.4_2), (18.27.6_5), (18.27.9_5), (18.27.12_5), (18.27.14_1)–(18.27.14_6), (18.27.17_1)–(18.27.17_3), (18.27.20_5), (18.27.25), (18.27.26), (18.28.1_5).

    • Section 18.28

      A big expansion. Six extra formulas in Subsection 18.28(ii) ((18.28.6_1)–(18.28.6_5)) and three extra formulas in Subsection 18.28(viii) ((18.28.21)–(18.28.23)). New subsections, 18.28(ix)18.28(xi), with Equations (18.28.23)–(18.28.34).

    • Section 18.30

      Originally this section did not have subsections. The original seven formulas have now more explanatory text and are split over two subsections. New subsections 18.30(iii)18.30(viii), with Equations (18.30.8)–(18.30.31).

    • Section 18.32

      This short section has been expanded, with Equation (18.32.2).

    • Section 18.33

      Additional references and a new large subsection, 18.33(vi), including Equations (18.33.17)–(18.33.32).

    • Section 18.34

      This section has been expanded, including an extra orthogonality relations (18.34.5_5), (18.34.7_1)–(18.34.7_3).

    • Section 18.35

      This section on Pollaczek polynomials has been significantly updated with much more explanations and as well to include the Pollaczek polynomials of type 3 which are the most general with three free parameters. The Pollaczek polynomials which were previously treated, namely those of type 1 and type 2 are special cases of the type 3 Pollaczek polynomials. In the first paragraph of this section an extensive description of the relations between the three types of Pollaczek polynomials is given which was lacking previously. Equations (18.35.0_5), (18.35.2_1)–(18.35.2_5), (18.35.4_5), (18.35.6_1)–(18.35.6_6), (18.35.10).

    • Section 18.36

      This section on miscellaneous polynomials has been expanded with new subsections, 18.36(v) on non-classical Laguerre polynomials and 18.36(vi) with examples of exceptional orthogonal polynomials, with Equations (18.36.1)–(18.36.10). In the titles of Subsections 18.36(ii) and 18.36(iii) we replaced “OP’s” by “Orthogonal Polynomials”.

    • Section 18.38

      The paragraphs of Subsection 18.38(i) have been re-ordered and one paragraph was added. The title of Subsection 18.38(ii) was changed from “Classical OP’s: Other Applications” to “Classical OP’s: Mathematical Developments and Applications”. Subsection 18.38(iii) has been expanded with seven new paragraphs, and Equations (18.38.4)–(18.38.11).

    • Section 18.39

      This section was completely rewritten. The previous 18.39(i) Quantum Mechanics has been replaced by Subsections 18.39(i) Quantum Mechanics and 18.39(ii) A 3D Separable Quantum System, the Hydrogen Atom, containing the same essential information; the original content of the subsection is reproduced below for reference. Subsection 18.39(ii) was moved to 18.39(v) Other Applications. New subsections, 18.39(iii) Non Classical Weight Functions of Utility in DVR Method in the Physical Sciences, 18.39(iv) Coulomb–Pollaczek Polynomials and J-Matrix Methods; Equations (18.39.7)–(18.39.48); and Figures 18.39.1, 18.39.2.

      The original text of 18.39(i) Quantum Mechanics was:

      “Classical OP’s appear when the time-dependent Schrödinger equation is solved by separation of variables. Consider, for example, the one-dimensional form of this equation for a particle of mass m with potential energy V ( x ) :

      errata.1 ( 2 2 m 2 x 2 + V ( x ) ) ψ ( x , t ) = i t ψ ( x , t ) ,

      where is the reduced Planck’s constant. On substituting ψ ( x , t ) = η ( x ) ζ ( t ) , we obtain two ordinary differential equations, each of which involve the same constant E . The equation for η ( x ) is

      errata.2 d 2 η d x 2 + 2 m 2 ( E V ( x ) ) η = 0 .

      For a harmonic oscillator, the potential energy is given by

      errata.3 V ( x ) = 1 2 m ω 2 x 2 ,

      where ω is the angular frequency. For (18.39.2) to have a nontrivial bounded solution in the interval < x < , the constant E (the total energy of the particle) must satisfy

      errata.4 E = E n = ( n + 1 2 ) ω , n = 0 , 1 , 2 , .

      The corresponding eigenfunctions are

      errata.5 η n ( x ) = π 1 4 2 1 2 n ( n ! b ) 1 2 H n ( x / b ) e x 2 / 2 b 2 ,

      where b = ( / m ω ) 1 / 2 , and H n is the Hermite polynomial. For further details, see Seaborn (1991, p. 224) or Nikiforov and Uvarov (1988, pp. 71-72).

      A second example is provided by the three-dimensional time-independent Schrödinger equation

      errata.6 2 ψ + 2 m 2 ( E V ( 𝐱 ) ) ψ = 0 ,

      when this is solved by separation of variables in spherical coordinates (§1.5(ii)). The eigenfunctions of one of the separated ordinary differential equations are Legendre polynomials. See Seaborn (1991, pp. 69-75).

      For a third example, one in which the eigenfunctions are Laguerre polynomials, see Seaborn (1991, pp. 87-93) and Nikiforov and Uvarov (1988, pp. 76-80 and 320-323).”

    • Section 18.40

      The old section is now Subsection 18.40(i) and a large new subsection, 18.40(ii), on the classical moment problem has been added, with formulae (18.40.1)–(18.40.10) and Figures 18.40.1, 18.40.2.

  • 27: 26.13 Permutations: Cycle Notation
    An explicit representation of σ can be given by the 2 × n matrix: …
    26.13.4 d ( n ) = n ! j = 0 n ( 1 ) j 1 j ! = n ! + e 2 e .
    28: Bibliography
  • A. D. Alhaidari, E. J. Heller, H. A. Yamani, and M. S. Abdelmonem (Eds.) (2008) The J -Matrix Method. Developments and Applications. Springer-Verlag.
  • Z. Altaç (1996) Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118 (3), pp. 789–792.
  • D. E. Amos (1983c) Uniform asymptotic expansions for exponential integrals E n ( x ) and Bickley functions Ki n ( x ) . ACM Trans. Math. Software 9 (4), pp. 467–479.
  • D. E. Amos (1980a) Algorithm 556: Exponential integrals. ACM Trans. Math. Software 6 (3), pp. 420–428.
  • D. E. Amos (1980b) Computation of exponential integrals. ACM Trans. Math. Software 6 (3), pp. 365–377.
  • 29: Bibliography S
  • D. M. Smith (2011) Algorithm 911: multiple-precision exponential integral and related functions. ACM Trans. Math. Software 37 (4), pp. Art. 46, 16.
  • A. Stankiewicz (1968) Tables of the integro-exponential functions. Acta Astronom. 18, pp. 289–311.
  • I. A. Stegun and R. Zucker (1974) Automatic computing methods for special functions. II. The exponential integral E n ( x ) . J. Res. Nat. Bur. Standards Sect. B 78B, pp. 199–216.
  • I. A. Stegun and R. Zucker (1976) Automatic computing methods for special functions. III. The sine, cosine, exponential integrals, and related functions. J. Res. Nat. Bur. Standards Sect. B 80B (2), pp. 291–311.
  • G. W. Stewart (2001) Matrix Algorithms. Vol. 2: Eigensystems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 30: Bibliography C
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1987) A numerical method for generalized exponential integrals. Comput. Math. Appl. 14 (4), pp. 261–268.
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1988) On the evaluation of generalized exponential integrals E v ( x ) . J. Comput. Phys. 78 (2), pp. 278–287.
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1990a) An algorithm for exponential integrals of real order. Computing 45 (3), pp. 269–276.
  • M. S. Corrington (1961) Applications of the complex exponential integral. Math. Comp. 15 (73), pp. 1–6.
  • A. Csótó and G. M. Hale (1997) S -matrix and R -matrix determination of the low-energy He 5 and Li 5 resonance parameters. Phys. Rev. C 55 (1), pp. 536–539.