About the Project

translation of variable

AdvancedHelp

(0.002 seconds)

11—20 of 22 matching pages

11: Bibliography
  • N. I. Akhiezer (1988) Lectures on Integral Transforms. Translations of Mathematical Monographs, Vol. 70, American Mathematical Society, Providence, RI.
  • N. I. Akhiezer (1990) Elements of the Theory of Elliptic Functions. Translations of Mathematical Monographs, Vol. 79, American Mathematical Society, Providence, RI.
  • V. I. Arnol’d, S. M. Guseĭn-Zade, and A. N. Varchenko (1988) Singularities of Differentiable Maps. Vol. II. Birkhäuser, Boston-Berlin.
  • V. I. Arnol’d (1986) Catastrophe Theory. 2nd edition, Springer-Verlag, Berlin.
  • V. I. Arnol’d (1992) Catastrophe Theory. 3rd edition, Springer-Verlag, Berlin.
  • 12: Bibliography F
  • V. N. Faddeeva and N. M. Terent’ev (1954) Tablicy značeniĭ funkcii w ( z ) = e z 2 ( 1 + 2 i π 0 z e t 2 𝑑 t ) ot kompleksnogo argumenta. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (Russian).
  • V. N. Faddeyeva and N. M. Terent’ev (1961) Tables of Values of the Function w ( z ) = e z 2 ( 1 + 2 i π 1 / 2 0 z e t 2 𝑑 t ) for Complex Argument. Edited by V. A. Fok; translated from the Russian by D. G. Fry. Mathematical Tables Series, Vol. 11, Pergamon Press, Oxford.
  • M. V. Fedoryuk (1989) The Lamé wave equation. Uspekhi Mat. Nauk 44 (1(265)), pp. 123–144, 248 (Russian).
  • M. V. Fedoryuk (1991) Asymptotics of the spectrum of the Heun equation and of Heun functions. Izv. Akad. Nauk SSSR Ser. Mat. 55 (3), pp. 631–646 (Russian).
  • C. Ferreira, J. L. López, and E. Pérez Sinusía (2013a) The third Appell function for one large variable. J. Approx. Theory 165, pp. 60–69.
  • 13: Bibliography G
  • I. M. Gel’fand and G. E. Shilov (1964) Generalized Functions. Vol. 1: Properties and Operations. Academic Press, New York.
  • S. G. Gindikin (1964) Analysis in homogeneous domains. Uspehi Mat. Nauk 19 (4 (118)), pp. 3–92 (Russian).
  • V. V. Golubev (1960) Lectures on Integration of the Equations of Motion of a Rigid Body About a Fixed Point. Translated from the Russian by J. Shorr-Kon, Office of Technical Services, U. S. Department of Commerce, Washington, D.C..
  • V. I. Gromak and N. A. Lukaševič (1982) Special classes of solutions of Painlevé equations. Differ. Uravn. 18 (3), pp. 419–429 (Russian).
  • A. Guthmann (1991) Asymptotische Entwicklungen für unvollständige Gammafunktionen. Forum Math. 3 (2), pp. 105–141 (German).
  • 14: 5.19 Mathematical Applications
    5.19.2 a k = 2 k + 2 3 1 k + 1 2 1 k + 1 = ( 1 k + 1 1 k + 1 2 ) 2 ( 1 k + 1 1 k + 2 3 ) .
    By translating the contour parallel to itself and summing the residues of the integrand, asymptotic expansions of f ( z ) for large | z | , or small | z | , can be obtained complete with an integral representation of the error term. …
    15: Bibliography B
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988a) Algorithms for computing Bessel functions of half-integer order with complex arguments. Zh. Vychisl. Mat. i Mat. Fiz. 28 (10), pp. 1449–1460, 1597.
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988b) Algorithms for evaluating spherical Bessel functions in the complex domain. Zh. Vychisl. Mat. i Mat. Fiz. 28 (12), pp. 1779–1788, 1918.
  • D. H. Bailey (1993) Algorithm 719: Multiprecision translation and execution of Fortran programs. ACM Trans. Math. Software 19 (3), pp. 288–319.
  • A. I. Bobenko (1991) Constant mean curvature surfaces and integrable equations. Uspekhi Mat. Nauk 46 (4(280)), pp. 3–42, 192 (Russian).
  • E. Brieskorn and H. Knörrer (1986) Plane Algebraic Curves. Birkhäuser Verlag, Basel.
  • 16: Bibliography I
  • M. E. H. Ismail (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • M. E. H. Ismail (2009) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
  • 17: 22.3 Graphics
    §22.3(i) Real Variables: Line Graphs
    See accompanying text
    Figure 22.3.2: k = 0.7 , 3 K x 3 K , K = 1.8456 . For cn ( x , k ) the curve for k = 1 / 2 = 0.70710 is a boundary between the curves that have an inflection point in the interval 0 x 2 K ( k ) , and its translates, and those that do not; see Walker (1996, p. 146). Magnify
    §22.3(ii) Real Variables: Surfaces
    See accompanying text
    Figure 22.3.15: dn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
    §22.3(iii) Complex z ; Real k
    18: Bibliography Y
  • Z. M. Yan (1992) Generalized Hypergeometric Functions and Laguerre Polynomials in Two Variables. In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemporary Mathematics, Vol. 138, pp. 239–259.
  • A. P. Yutsis, I. B. Levinson, and V. V. Vanagas (1962) Mathematical Apparatus of the Theory of Angular Momentum. Israel Program for Scientific Translations for National Science Foundation and the National Aeronautics and Space Administration, Jerusalem.
  • 19: Bibliography K
  • A. A. Kapaev (1988) Asymptotic behavior of the solutions of the Painlevé equation of the first kind. Differ. Uravn. 24 (10), pp. 1684–1695 (Russian).
  • A. A. Karatsuba and S. M. Voronin (1992) The Riemann Zeta-Function. de Gruyter Expositions in Mathematics, Vol. 5, Walter de Gruyter & Co., Berlin.
  • A. V. Kashevarov (1998) The second Painlevé equation in electric probe theory. Some numerical solutions. Zh. Vychisl. Mat. Mat. Fiz. 38 (6), pp. 992–1000 (Russian).
  • M. K. Kerimov (1999) The Rayleigh function: Theory and computational methods. Zh. Vychisl. Mat. Mat. Fiz. 39 (12), pp. 1962–2006.
  • V. I. Krylov and N. S. Skoblya (1985) A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation. Mir, Moscow.
  • 20: Bibliography D
  • Delft Numerical Analysis Group (1973) On the computation of Mathieu functions. J. Engrg. Math. 7, pp. 39–61.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • C. F. Dunkl and Y. Xu (2001) Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, Vol. 81, Cambridge University Press, Cambridge.
  • A. Dzieciol, S. Yngve, and P. O. Fröman (1999) Coulomb wave functions with complex values of the variable and the parameters. J. Math. Phys. 40 (12), pp. 6145–6166.