- §22.3(i) Real Variables: Line Graphs
- §22.3(ii) Real Variables: Surfaces
- §22.3(iii) Complex $z$; Real $k$
- §22.3(iv) Complex $k$

Line graphs of the functions $\mathrm{sn}\left(x,k\right)$, $\mathrm{cn}\left(x,k\right)$, $\mathrm{dn}\left(x,k\right)$, $\mathrm{cd}\left(x,k\right)$, $\mathrm{sd}\left(x,k\right)$, $\mathrm{nd}\left(x,k\right)$, $\mathrm{dc}\left(x,k\right)$, $\mathrm{nc}\left(x,k\right)$, $\mathrm{sc}\left(x,k\right)$, $\mathrm{ns}\left(x,k\right)$, $\mathrm{ds}\left(x,k\right)$, and $\mathrm{cs}\left(x,k\right)$ for representative values of real $x$ and real $k$ illustrating the near trigonometric ($k=0$), and near hyperbolic ($k=1$) limits.

$\mathrm{sn}\left(x,k\right)$, $\mathrm{cn}\left(x,k\right)$, and $\mathrm{dn}\left(x,k\right)$ as functions of real arguments $x$ and $k$. The period diverges logarithmically as $k\to 1-$; see §19.12.

In the graphics shown in this subsection height corresponds to the absolute value of the function and color to the phase. See About Color Map.

In Figures 22.3.24 and 22.3.25, height corresponds to the absolute value of the function and color to the phase. See p. About Color Map.