# §22.3 Graphics

## §22.3(i) Real Variables: Line Graphs

Line graphs of the functions $\mathop{\mathrm{sn}\/}\nolimits\left(x,k\right)$, $\mathop{\mathrm{cn}\/}\nolimits\left(x,k\right)$, $\mathop{\mathrm{dn}\/}\nolimits\left(x,k\right)$, $\mathop{\mathrm{cd}\/}\nolimits\left(x,k\right)$, $\mathop{\mathrm{sd}\/}\nolimits\left(x,k\right)$, $\mathop{\mathrm{nd}\/}\nolimits\left(x,k\right)$, $\mathop{\mathrm{dc}\/}\nolimits\left(x,k\right)$, $\mathop{\mathrm{nc}\/}\nolimits\left(x,k\right)$, $\mathop{\mathrm{sc}\/}\nolimits\left(x,k\right)$, $\mathop{\mathrm{ns}\/}\nolimits\left(x,k\right)$, $\mathop{\mathrm{ds}\/}\nolimits\left(x,k\right)$, and $\mathop{\mathrm{cs}\/}\nolimits\left(x,k\right)$ for representative values of real $x$ and real $k$ illustrating the near trigonometric ($k=0$), and near hyperbolic ($k=1$) limits.

## §22.3(ii) Real Variables: Surfaces

$\mathop{\mathrm{sn}\/}\nolimits\left(x,k\right)$, $\mathop{\mathrm{cn}\/}\nolimits\left(x,k\right)$, and $\mathop{\mathrm{dn}\/}\nolimits\left(x,k\right)$ as functions of real arguments $x$ and $k$. The period diverges logarithmically as $k\to 1-$; see §19.12.

## §22.3(iii) Complex $z$; Real $k$

In the graphics shown in this subsection height corresponds to the absolute value of the function and color to the phase. See About Color Map.

## §22.3(iv) Complex $k$

In Figures 22.3.24 and 22.3.25, height corresponds to the absolute value of the function and color to the phase. See p. About Color Map.