22.2 Definitions22.4 Periods, Poles, and Zeros

§22.3 Graphics

Contents

§22.3(i) Real Variables: Line Graphs

Line graphs of the functions \mathop{\mathrm{sn}\/}\nolimits\left(x,k\right), \mathop{\mathrm{cn}\/}\nolimits\left(x,k\right), \mathop{\mathrm{dn}\/}\nolimits\left(x,k\right), \mathop{\mathrm{cd}\/}\nolimits\left(x,k\right), \mathop{\mathrm{sd}\/}\nolimits\left(x,k\right), \mathop{\mathrm{nd}\/}\nolimits\left(x,k\right), \mathop{\mathrm{dc}\/}\nolimits\left(x,k\right), \mathop{\mathrm{nc}\/}\nolimits\left(x,k\right), \mathop{\mathrm{sc}\/}\nolimits\left(x,k\right), \mathop{\mathrm{ns}\/}\nolimits\left(x,k\right), \mathop{\mathrm{ds}\/}\nolimits\left(x,k\right), and \mathop{\mathrm{cs}\/}\nolimits\left(x,k\right) for representative values of real x and real k illustrating the near trigonometric (k=0), and near hyperbolic (k=1) limits.

See accompanying text
Figure 22.3.1: k=0.4, -3K\leq x\leq 3K, K=1.6399\dots. Magnify
See accompanying text
Figure 22.3.2: k=0.7, -3K\leq x\leq 3K, K=1.8456\dots. For \mathop{\mathrm{cn}\/}\nolimits\left(x,k\right) the curve for k=1/\sqrt{2}=0.70710\dots is a boundary between the curves that have an inflection point in the interval 0\leq x\leq 2\!\mathop{K\/}\nolimits\!\left(k\right), and its translates, and those that do not; see Walker (1996, p. 146). Magnify

§22.3(ii) Real Variables: Surfaces

\mathop{\mathrm{sn}\/}\nolimits\left(x,k\right), \mathop{\mathrm{cn}\/}\nolimits\left(x,k\right), and \mathop{\mathrm{dn}\/}\nolimits\left(x,k\right) as functions of real arguments x and k. The period diverges logarithmically as k\to 1-; see §19.12.

§22.3(iii) Complex z; Real k

In the graphics shown in this subsection height corresponds to the absolute value of the function and color to the phase. See About Color Map.

§22.3(iv) Complex k

See accompanying text
Figure 22.3.22: \realpart{\mathop{\mathrm{sn}\/}\nolimits\left(x,k\right)}, x=120, as a function of k^{2}=i\kappa^{2}, 0\leq\kappa\leq 4. Magnify
See accompanying text
Figure 22.3.23: \imagpart{\mathop{\mathrm{sn}\/}\nolimits\left(x,k\right)}, x=120, as a function of k^{2}=i\kappa^{2}, 0\leq\kappa\leq 4. Magnify

In Figures 22.3.24 and 22.3.25, height corresponds to the absolute value of the function and color to the phase. See p. About Color Map.

See accompanying text
Figure 22.3.26: Density plot of |\mathop{\mathrm{sn}\/}\nolimits\left(5,k\right)| as a function of complex k^{2}, -10\leq\realpart{(k^{2})}\leq 20, -10\leq\imagpart{(k^{2})}\leq 10. Grayscale, running from 0 (black) to 10 (white), with |(\mathop{\mathrm{sn}\/}\nolimits\left(5,k\right))|>10 truncated to 10. White spots correspond to poles. Magnify
See accompanying text
Figure 22.3.27: Density plot of |\mathop{\mathrm{sn}\/}\nolimits\left(10,k\right)| as a function of complex k^{2}, -10\leq\realpart{(k^{2})}\leq 20, -10\leq\imagpart{(k^{2})}\leq 10. Grayscale, running from 0 (black) to 10 (white), with |\mathop{\mathrm{sn}\/}\nolimits\left(10,k\right)|>10 truncated to 10. White spots correspond to poles. Magnify
See accompanying text
Figure 22.3.28: Density plot of |\mathop{\mathrm{sn}\/}\nolimits\left(20,k\right)| as a function of complex k^{2}, -10\leq\realpart{(k^{2})}\leq 20, -10\leq\imagpart{(k^{2})}\leq 10. Grayscale, running from 0 (black) to 10 (white), with |\mathop{\mathrm{sn}\/}\nolimits\left(20,k\right)|>10 truncated to 10. White spots correspond to poles. Magnify
See accompanying text
Figure 22.3.29: Density plot of |\mathop{\mathrm{sn}\/}\nolimits\left(30,k\right)| as a function of complex k^{2}, -10\leq\realpart{(k^{2})}\leq 20, -10\leq\imagpart{(k^{2})}\leq 10. Grayscale, running from 0 (black) to 10 (white), with |\mathop{\mathrm{sn}\/}\nolimits\left(30,k\right)|>10 truncated to 10. White spots correspond to poles. Magnify
Choose format for 3D interactive visualization
Format
 
Please see Visualization Help for details, and Customize to change your choice, or for other customizations.