About the Project

Gauss 2F1(-1) sum

AdvancedHelp

(0.011 seconds)

1—10 of 818 matching pages

1: 32.10 Special Function Solutions
β–ΊFor example, if Ξ± = 1 2 ⁒ Ξ΅ , with Ξ΅ = ± 1 , then the Riccati equation is … β–Ίwith n β„€ , and Ξ΅ 1 = ± 1 , Ξ΅ 2 = ± 1 , independently. … β–Ίwith n β„€ and Ξ΅ = ± 1 . … β–Ίwhere n β„€ , a = Ξ΅ 1 ⁒ 2 ⁒ Ξ± , and b = Ξ΅ 2 ⁒ 2 ⁒ Ξ² , with Ξ΅ j = ± 1 , j = 1 , 2 , 3 , independently. … β–Ίwhere n β„€ , a = Ξ΅ 1 ⁒ 2 ⁒ Ξ± , b = Ξ΅ 2 ⁒ 2 ⁒ Ξ² , c = Ξ΅ 3 ⁒ 2 ⁒ Ξ³ , and d = Ξ΅ 4 ⁒ 1 2 ⁒ Ξ΄ , with Ξ΅ j = ± 1 , j = 1 , 2 , 3 , 4 , independently. …
2: 16.10 Expansions in Series of F q p Functions
§16.10 Expansions in Series of F q p Functions
β–Ί
16.10.1 F q + s p + r ⁑ ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ⁒ ΞΆ ) = k = 0 ( 𝐚 ) k ⁒ ( Ξ± ) k ⁒ ( Ξ² ) k ⁒ ( z ) k ( 𝐛 ) k ⁒ ( Ξ³ + k ) k ⁒ k ! ⁒ F q + 1 p + 2 ⁑ ( Ξ± + k , Ξ² + k , a 1 + k , , a p + k Ξ³ + 2 ⁒ k + 1 , b 1 + k , , b q + k ; z ) ⁒ F s + 2 r + 2 ⁑ ( k , Ξ³ + k , c 1 , , c r Ξ± , Ξ² , d 1 , , d s ; ΞΆ ) .
β–Ί β–ΊWhen | ΞΆ 1 | < 1 the series on the right-hand side converges in the half-plane ⁑ z < 1 2 . β–ΊExpansions of the form n = 1 ( ± 1 ) n ⁒ F p + 1 p ⁑ ( 𝐚 ; 𝐛 ; n 2 ⁒ z 2 ) are discussed in Miller (1997), and further series of generalized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov et al. (1990, §§5.3, 6.8–6.9).
3: 5.5 Functional Relations
β–Ί
5.5.3 Ξ“ ⁑ ( z ) ⁒ Ξ“ ⁑ ( 1 z ) = Ο€ / sin ⁑ ( Ο€ ⁒ z ) , z 0 , ± 1 , ,
β–Ί
5.5.4 ψ ⁑ ( z ) ψ ⁑ ( 1 z ) = Ο€ / tan ⁑ ( Ο€ ⁒ z ) , z 0 , ± 1 , .
β–ΊFor 2 ⁒ z 0 , 1 , 2 , , … β–Ί
Gauss’s Multiplication Formula
β–ΊFor n ⁒ z 0 , 1 , 2 , , …
4: 15.4 Special Cases
β–ΊExceptions are (15.4.8) and (15.4.10), that hold for | z | < Ο€ / 4 , and (15.4.12), (15.4.14), and (15.4.16), that hold for | z | < Ο€ / 2 . … β–Ί
§15.4(ii) Argument Unity
β–Ί
Dougall’s Bilateral Sum
β–Ί
§15.4(iii) Other Arguments
β–Ίwhere the limit interpretation (15.2.6), rather than (15.2.5), has to be taken when in (15.4.33) a = 1 3 , 4 3 , 7 3 , , and in (15.4.34) a = 0 , 1 , 2 , . …
5: 15.5 Derivatives and Contiguous Functions
β–ΊThe six functions F ⁑ ( a ± 1 , b ; c ; z ) , F ⁑ ( a , b ± 1 ; c ; z ) , F ⁑ ( a , b ; c ± 1 ; z ) are said to be contiguous to F ⁑ ( a , b ; c ; z ) . … β–Ί
15.5.12 ( b a ) ⁒ F ⁑ ( a , b ; c ; z ) + a ⁒ F ⁑ ( a + 1 , b ; c ; z ) b ⁒ F ⁑ ( a , b + 1 ; c ; z ) = 0 ,
β–ΊBy repeated applications of (15.5.11)–(15.5.18) any function F ⁑ ( a + k , b + β„“ ; c + m ; z ) , in which k , β„“ , m are integers, can be expressed as a linear combination of F ⁑ ( a , b ; c ; z ) and any one of its contiguous functions, with coefficients that are rational functions of a , b , c , and z . … β–Ί
15.5.19 z ⁒ ( 1 z ) ⁒ ( a + 1 ) ⁒ ( b + 1 ) ⁒ F ⁑ ( a + 2 , b + 2 ; c + 2 ; z ) + ( c ( a + b + 1 ) ⁒ z ) ⁒ ( c + 1 ) ⁒ F ⁑ ( a + 1 , b + 1 ; c + 1 ; z ) c ⁒ ( c + 1 ) ⁒ F ⁑ ( a , b ; c ; z ) = 0 .
β–Ί
15.5.20 z ⁒ ( 1 z ) ⁒ ( d F ⁑ ( a , b ; c ; z ) / d z ) = ( c a ) ⁒ F ⁑ ( a 1 , b ; c ; z ) + ( a c + b ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) = ( c b ) ⁒ F ⁑ ( a , b 1 ; c ; z ) + ( b c + a ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) ,
6: 18.33 Polynomials Orthogonal on the Unit Circle
β–ΊInstead of (18.33.9) one might take monic OP’s { q n ⁑ ( x ) } with weight function ( 1 + x ) ⁒ w 1 ⁒ ( x ) , and then express q n ⁑ ( 1 2 ⁒ ( z + z 1 ) ) in terms of Ο• 2 ⁒ n ⁑ ( z ± 1 ) or Ο• 2 ⁒ n + 1 ⁑ ( z ± 1 ) . …See Zhedanov (1998, §2). … β–ΊFor the hypergeometric function F 1 2 see §§15.1 and 15.2(i). … β–ΊFor the notation, including the basic hypergeometric function Ο• 1 2 , see §§17.2 and 17.4(i). … β–ΊSee Simon (2005a, p. 2, item (2)). …
7: 10.59 Integrals
β–Ί
10.59.1 e i ⁒ b ⁒ t ⁒ 𝗃 n ⁑ ( t ) ⁒ d t = { Ο€ ⁒ i n ⁒ P n ⁑ ( b ) , 1 < b < 1 , 1 2 ⁒ Ο€ ⁒ ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
8: 19.21 Connection Formulas
β–Ί
19.21.1 R F ⁑ ( 0 , z + 1 , z ) ⁒ R D ⁑ ( 0 , z + 1 , 1 ) + R D ⁑ ( 0 , z + 1 , z ) ⁒ R F ⁑ ( 0 , z + 1 , 1 ) = 3 ⁒ Ο€ / ( 2 ⁒ z ) , z β„‚ βˆ– ( , 0 ] .
β–ΊThe complete cases of R F and R G have connection formulas resulting from those for the Gauss hypergeometric function (Erdélyi et al. (1953a, §2.9)). … β–Ί
19.21.4 R F ⁑ ( 0 , z 1 , z ) = R F ⁑ ( 0 , 1 z , 1 ) βˆ“ i ⁒ R F ⁑ ( 0 , z , 1 ) ,
β–Ί
19.21.5 2 ⁒ R G ⁑ ( 0 , z 1 , z ) = 2 ⁒ R G ⁑ ( 0 , 1 z , 1 ) ± i ⁒ 2 ⁒ R G ⁑ ( 0 , z , 1 ) + ( z 1 ) ⁒ R F ⁑ ( 0 , 1 z , 1 ) βˆ“ i ⁒ z ⁒ R F ⁑ ( 0 , z , 1 ) .
β–Ί
19.21.11 6 ⁒ R G ⁑ ( x , y , z ) = 3 ⁒ ( x + y + z ) ⁒ R F ⁑ ( x , y , z ) x 2 ⁒ R D ⁑ ( y , z , x ) = x ⁒ ( y + z ) ⁒ R D ⁑ ( y , z , x ) ,
9: 4.24 Inverse Trigonometric Functions: Further Properties
β–Ί
4.24.13 Arcsin ⁑ u ± Arcsin ⁑ v = Arcsin ⁑ ( u ⁒ ( 1 v 2 ) 1 / 2 ± v ⁒ ( 1 u 2 ) 1 / 2 ) ,
β–Ί
4.24.14 Arccos ⁑ u ± Arccos ⁑ v = Arccos ⁑ ( u ⁒ v βˆ“ ( ( 1 u 2 ) ⁒ ( 1 v 2 ) ) 1 / 2 ) ,
β–Ί
4.24.15 Arctan ⁑ u ± Arctan ⁑ v = Arctan ⁑ ( u ± v 1 βˆ“ u ⁒ v ) ,
β–Ί
4.24.16 Arcsin ⁑ u ± Arccos ⁑ v = Arcsin ⁑ ( u ⁒ v ± ( ( 1 u 2 ) ⁒ ( 1 v 2 ) ) 1 / 2 ) = Arccos ⁑ ( v ⁒ ( 1 u 2 ) 1 / 2 βˆ“ u ⁒ ( 1 v 2 ) 1 / 2 ) ,
β–Ί
4.24.17 Arctan ⁑ u ± Arccot ⁑ v = Arctan ⁑ ( u ⁒ v ± 1 v βˆ“ u ) = Arccot ⁑ ( v βˆ“ u u ⁒ v ± 1 ) .
10: 15.12 Asymptotic Approximations
β–Ί
  • (a)

    a and/or b { 0 , 1 , 2 , } .

  • β–Ί
  • (d)

    ⁑ z > 1 2 and Ξ± 1 2 ⁒ Ο€ + Ξ΄ ph ⁑ c Ξ± + + 1 2 ⁒ Ο€ Ξ΄ , where

    15.12.1 Ξ± ± = arctan ⁑ ( ph ⁑ z ph ⁑ ( 1 z ) βˆ“ Ο€ ln ⁑ | 1 z 1 | ) ,

    with z restricted so that ± Ξ± ± [ 0 , 1 2 ⁒ Ο€ ) .

  • β–ΊThen for fixed m { 0 , 1 , 2 , } , … β–ΊFor the more general case in which a 2 = o ⁑ ( c ) and b 2 = o ⁑ ( c ) see Wagner (1990). … β–ΊBy combination of the foregoing results of this subsection with the linear transformations of §15.8(i) and the connection formulas of §15.10(ii), similar asymptotic approximations for F ⁑ ( a + e 1 ⁒ Ξ» , b + e 2 ⁒ Ξ» ; c + e 3 ⁒ Ξ» ; z ) can be obtained with e j = ± 1 or 0 , j = 1 , 2 , 3 . …