5.4 Special Values and Extrema5.6 Inequalities

§5.5 Functional Relations

Contents

§5.5(i) Recurrence

5.5.1\mathop{\Gamma\/}\nolimits\!\left(z+1\right)=z\mathop{\Gamma\/}\nolimits\!\left(z\right),
5.5.2\mathop{\psi\/}\nolimits\!\left(z+1\right)=\mathop{\psi\/}\nolimits\!\left(z\right)+\frac{1}{z}.

§5.5(ii) Reflection

5.5.3\mathop{\Gamma\/}\nolimits\!\left(z\right)\mathop{\Gamma\/}\nolimits\!\left(1-z\right)=\pi/\mathop{\sin\/}\nolimits\!\left(\pi z\right),z\neq 0,\pm 1,\dots,
5.5.4\mathop{\psi\/}\nolimits\!\left(z\right)-\mathop{\psi\/}\nolimits\!\left(1-z\right)=-\pi/\mathop{\tan\/}\nolimits\!\left(\pi z\right),z\neq 0,\pm 1,\dots.

§5.5(iii) Multiplication

Duplication Formula

For 2z\neq 0,-1,-2,\dots,

5.5.5\mathop{\Gamma\/}\nolimits\!\left(2z\right)=\pi^{{-1/2}}2^{{2z-1}}\mathop{\Gamma\/}\nolimits\!\left(z\right)\mathop{\Gamma\/}\nolimits\!\left(z+\tfrac{1}{2}\right).

Gauss’s Multiplication Formula

See also Sándor and Tóth (1989).

§5.5(iv) Bohr–Mollerup Theorem

If a positive function f(x) on (0,\infty) satisfies f(x+1)=xf(x), f(1)=1, and \mathop{\ln\/}\nolimits f(x) is convex (see §1.4(viii)), then f(x)=\mathop{\Gamma\/}\nolimits\!\left(x\right).