16 Generalized Hypergeometric Functions and Meijer G-Function16.2 Definition and Analytic Properties

§16.1 Special Notation

(For other notation see Notation for the Special Functions.)

p,q nonnegative integers.
k,n nonnegative integers, unless
stated otherwise.
z complex variable.
\rselection{a_{1},a_{2},\dots,a_{p}\\
b_{1},b_{2},\dots,b_{q}} real or complex parameters.
\delta arbitrary small positive constant.
\mathbf{a} vector (a_{1},a_{2},\dots,a_{p}).
\mathbf{b} vector (b_{1},b_{2},\dots,b_{q}).
\left(\mathbf{a}\right)_{{k}} \left(a_{1}\right)_{{k}}\left(a_{2}\right)_{{k}}\cdots\left(a_{p}\right)_{{k}}.
\left(\mathbf{b}\right)_{{k}} \left(b_{1}\right)_{{k}}\left(b_{2}\right)_{{k}}\cdots\left(b_{q}\right)_{{k}}.
D \ifrac{d}{dz}.
\vartheta z\ifrac{d}{dz}.

The main functions treated in this chapter are the generalized hypergeometric function \mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left({a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}};z\right), the Appell (two-variable hypergeometric) functions \mathop{{F_{{1}}}\/}\nolimits\!\left(\alpha;\beta,\beta^{{\prime}};\gamma;x,y\right), \mathop{{F_{{2}}}\/}\nolimits\!\left(\alpha;\beta,\beta^{{\prime}};\gamma,\gamma^{{\prime}};x,y\right), \mathop{{F_{{3}}}\/}\nolimits\!\left(\alpha,\alpha^{{\prime}};\beta,\beta^{{\prime}};\gamma;x,y\right), \mathop{{F_{{4}}}\/}\nolimits\!\left(\alpha;\beta;\gamma,\gamma^{{\prime}};x,y\right), and the Meijer G-function \mathop{{G^{{m,n}}_{{p,q}}}\/}\nolimits\!\left(z;{a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}}\right). Alternative notations are \mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left({\mathbf{a}\atop\mathbf{b}};z\right), \mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left(a_{1},\dots,a_{p};b_{1},\dots,b_{q};z\right), and \mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left(\mathbf{a};\mathbf{b};z\right) for the generalized hypergeometric function, F_{1}(\alpha,\beta,\beta^{{\prime}};\gamma;x,y), F_{2}(\alpha,\beta,\beta^{{\prime}};\gamma,\gamma^{{\prime}};x,y), F_{3}(\alpha,\alpha^{{\prime}},\beta,\beta^{{\prime}};\gamma;x,y), F_{4}(\alpha,\beta;\gamma,\gamma^{{\prime}};x,y), for the Appell functions, and \mathop{{G^{{m,n}}_{{p,q}}}\/}\nolimits\!\left(z;\mathbf{a};\mathbf{b}\right) for the Meijer G-function.