About the Project

eigenvalue methods

AdvancedHelp

(0.002 seconds)

11—20 of 21 matching pages

11: 1.2 Elementary Algebra
β–ΊNumerical methods and issues for solution of (1.2.61) appear in §§3.2(i) to 3.2(iii). … β–Ί
Eigenvectors and Eigenvalues of Square Matrices
β–ΊEigenvalues are the roots of the polynomial equation …Numerical methods and issues for solution of (1.2.72) appear in §§3.2(iv) to 3.2(vii). … β–Ί
Relation of Eigenvalues to the Determinant and Trace
12: Software Index
β–Ί β–Ίβ–Ίβ–Ίβ–Ί
Open Source With Book Commercial
28.36(ii) Exponents, Eigenvalues βœ“ βœ“ βœ“ βœ“ βœ“ a
30.18(ii) Eigenvalues Ξ» n m ⁑ ( Ξ³ 2 ) βœ“ βœ“ βœ“ βœ“
β–Ί
  • Research Software.

    This is software of narrow scope developed as a byproduct of a research project and subsequently made available at no cost to the public. The software is often meant to demonstrate new numerical methods or software engineering strategies which were the subject of a research project. When developed, the software typically contains capabilities unavailable elsewhere. While the software may be quite capable, it is typically not professionally packaged and its use may require some expertise. The software is typically provided as source code or via a web-based service, and no support is provided.

  • 13: Bibliography L
    β–Ί
  • J. C. Lagarias, V. S. Miller, and A. M. Odlyzko (1985) Computing Ο€ ⁒ ( x ) : The Meissel-Lehmer method. Math. Comp. 44 (170), pp. 537–560.
  • β–Ί
  • T. M. Larsen, D. Erricolo, and P. L. E. Uslenghi (2009) New method to obtain small parameter power series expansions of Mathieu radial and angular functions. Math. Comp. 78 (265), pp. 255–274.
  • β–Ί
  • W. Lay, K. Bay, and S. Yu. Slavyanov (1998) Asymptotic and numeric study of eigenvalues of the double confluent Heun equation. J. Phys. A 31 (42), pp. 8521–8531.
  • β–Ί
  • D. Le (1985) An efficient derivative-free method for solving nonlinear equations. ACM Trans. Math. Software 11 (3), pp. 250–262.
  • β–Ί
  • I. M. Longman (1956) Note on a method for computing infinite integrals of oscillatory functions. Proc. Cambridge Philos. Soc. 52 (4), pp. 764–768.
  • 14: Bibliography B
    β–Ί
  • E. A. Bender (1974) Asymptotic methods in enumeration. SIAM Rev. 16 (4), pp. 485–515.
  • β–Ί
  • M. V. Berry and J. P. Keating (1999) The Riemann zeros and eigenvalue asymptotics. SIAM Rev. 41 (2), pp. 236–266.
  • β–Ί
  • Å. Björck (1996) Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • β–Ί
  • G. Blanch (1966) Numerical aspects of Mathieu eigenvalues. Rend. Circ. Mat. Palermo (2) 15, pp. 51–97.
  • β–Ί
  • W. G. C. Boyd (1995) Approximations for the late coefficients in asymptotic expansions arising in the method of steepest descents. Methods Appl. Anal. 2 (4), pp. 475–489.
  • 15: 29.15 Fourier Series and Chebyshev Series
    β–ΊA convenient way of constructing the coefficients, together with the eigenvalues, is as follows. Equations (29.6.4), with p = 1 , 2 , , n , (29.6.3), and A 2 ⁒ n + 2 = 0 can be cast as an algebraic eigenvalue problem in the following way. …Let the eigenvalues of 𝐌 be H p with … β–Ί
    29.15.7 a ν 2 ⁒ m ⁑ ( k 2 ) = 1 2 ⁒ ( H m + ν ⁒ ( ν + 1 ) ⁒ k 2 ) ,
    β–Ί
    29.15.22 a ν 2 ⁒ m ⁑ ( k 2 ) = 1 2 ⁒ ( H m + ν ⁒ ( ν + 1 ) ⁒ k 2 ) ,
    16: 35.7 Gaussian Hypergeometric Function of Matrix Argument
    β–Ί
    35.7.3 F 1 2 ⁑ ( a , b c ; [ t 1 0 0 t 2 ] ) = k = 0 ( a ) k ⁒ ( c a ) k ⁒ ( b ) k ⁒ ( c b ) k k ! ⁒ ( c ) 2 ⁒ k ⁒ ( c 1 2 ) k ⁒ ( t 1 ⁒ t 2 ) k ⁒ F 1 2 ⁑ ( a + k , b + k c + 2 ⁒ k ; t 1 + t 2 t 1 ⁒ t 2 ) .
    β–ΊLet f : 𝛀 β„‚ (a) be orthogonally invariant, so that f ⁑ ( 𝐓 ) is a symmetric function of t 1 , , t m , the eigenvalues of the matrix argument 𝐓 𝛀 ; (b) be analytic in t 1 , , t m in a neighborhood of 𝐓 = 𝟎 ; (c) satisfy f ⁑ ( 𝟎 ) = 1 . … β–Ί
    35.7.9 t j ⁒ ( 1 t j ) ⁒ 2 F t j 2 1 2 ⁒ k = 1 k j m t k ⁒ ( 1 t k ) t j t k ⁒ F t k + ( c 1 2 ⁒ ( m 1 ) ( a + b 1 2 ⁒ ( m 3 ) ) ⁒ t j + 1 2 ⁒ k = 1 k j m t j ⁒ ( 1 t j ) t j t k ) ⁒ F t j = a ⁒ b ⁒ F ,
    β–ΊButler and Wood (2002) applies Laplace’s method2.3(iii)) to (35.7.5) to derive uniform asymptotic approximations for the functions …
    17: Bibliography R
    β–Ί
  • M. Reed and B. Simon (1975) Methods of Modern Mathematical Physics, Vol. 2, Fourier Analysis, Self-Adjointness. Academic Press, New York.
  • β–Ί
  • M. Reed and B. Simon (1978) Methods of Modern Mathematical Physics, Vol. 4, Analysis of Operators. Academic Press, New York.
  • β–Ί
  • M. Reed and B. Simon (1979) Methods of Modern Mathematical Physics, Vol. 3, Scattering Theory. Academic Press, New York.
  • β–Ί
  • M. Reed and B. Simon (1980) Methods of Modern Mathematical Physics, Vol. 1, Functional Analysis. Elsevier, New York.
  • β–Ί
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • 18: Bibliography I
    β–Ί
  • L. Infeld and T. E. Hull (1951) The factorization method. Rev. Modern Phys. 23 (1), pp. 21–68.
  • β–Ί
  • M. E. H. Ismail and E. Koelink (2011) The J -matrix method. Adv. in Appl. Math. 46 (1-4), pp. 379–395.
  • β–Ί
  • A. R. Its, A. S. Fokas, and A. A. Kapaev (1994) On the asymptotic analysis of the Painlevé equations via the isomonodromy method. Nonlinearity 7 (5), pp. 1291–1325.
  • β–Ί
  • A. R. Its and V. Yu. Novokshënov (1986) The Isomonodromic Deformation Method in the Theory of Painlevé Equations. Lecture Notes in Mathematics, Vol. 1191, Springer-Verlag, Berlin.
  • β–Ί
  • C. Itzykson and J. Drouffe (1989) Statistical Field Theory: Strong Coupling, Monte Carlo Methods, Conformal Field Theory, and Random Systems. Vol. 2, Cambridge University Press, Cambridge.
  • 19: Bibliography V
    β–Ί
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • β–Ί
  • H. Volkmer (1998) On the growth of convergence radii for the eigenvalues of the Mathieu equation. Math. Nachr. 192, pp. 239–253.
  • β–Ί
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • β–Ί
  • H. Volkmer (2004b) Four remarks on eigenvalues of Lamé’s equation. Anal. Appl. (Singap.) 2 (2), pp. 161–175.
  • β–Ί
  • H. Volkmer (2008) Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials. J. Comput. Appl. Math. 213 (2), pp. 488–500.
  • 20: Bibliography W
    β–Ί
  • P. L. Walker (2009) The distribution of the zeros of Jacobian elliptic functions with respect to the parameter k . Comput. Methods Funct. Theory 9 (2), pp. 579–591.
  • β–Ί
  • J. A. Wheeler (1937) Wave functions for large arguments by the amplitude-phase method. Phys. Rev. 52, pp. 1123–1127.
  • β–Ί
  • J. H. Wilkinson (1988) The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis. Oxford Science Publications, The Clarendon Press, Oxford University Press, Oxford.
  • β–Ί
  • R. Wong and M. Wyman (1974) The method of Darboux. J. Approximation Theory 10 (2), pp. 159–171.
  • β–Ί
  • R. Wong and Y. Zhao (2005) On a uniform treatment of Darboux’s method. Constr. Approx. 21 (2), pp. 225–255.