32.3 Graphics32.5 Integral Equations

§32.4 Isomonodromy Problems

Contents

§32.4(i) Definition

\mbox{P}_{{\mbox{\scriptsize I}}}\mbox{P}_{{\mbox{\scriptsize VI}}} can be expressed as the compatibility condition of a linear system, called an isomonodromy problem or Lax pair. Suppose

32.4.1
\frac{\partial\boldsymbol{{\Psi}}}{\partial\lambda}=\mathbf{A}(z,\lambda)\boldsymbol{{\Psi}},
\frac{\partial\boldsymbol{{\Psi}}}{\partial z}=\mathbf{B}(z,\lambda)\boldsymbol{{\Psi}},

is a linear system in which \mathbf{A} and \mathbf{B} are matrices and \lambda is independent of z. Then the equation

32.4.2\frac{{\partial}^{2}\boldsymbol{{\Psi}}}{\partial z\partial\lambda}=\frac{{\partial}^{2}\boldsymbol{{\Psi}}}{\partial\lambda\partial z},

is satisfied provided that

32.4.3\frac{\partial\mathbf{A}}{\partial z}-\frac{\partial\mathbf{B}}{\partial\lambda}+\mathbf{A}\mathbf{B}-\mathbf{B}\mathbf{A}=0.

(32.4.3) is the compatibility condition of (32.4.1). Isomonodromy problems for Painlevé equations are not unique.

§32.4(ii) First Painlevé Equation

\mbox{P}_{{\mbox{\scriptsize I}}} is the compatibility condition of (32.4.1) with

32.4.4\mathbf{A}(z,\lambda)=(4\lambda^{4}+2w^{2}+z)\begin{bmatrix}1&0\\
0&-1\end{bmatrix}-i(4\lambda^{2}w+2w^{2}+z)\begin{bmatrix}0&-i\\
i&0\end{bmatrix}-\left(2\lambda w^{{\prime}}+\frac{1}{2\lambda}\right)\begin{bmatrix}0&1\\
1&0\end{bmatrix},
32.4.5\mathbf{B}(z,\lambda)=\left(\lambda+\dfrac{w}{\lambda}\right)\begin{bmatrix}1&0\\
0&-1\end{bmatrix}-\dfrac{iw}{\lambda}\begin{bmatrix}0&-i\\
i&0\end{bmatrix}.

§32.4(iii) Second Painlevé Equation

\mbox{P}_{{\mbox{\scriptsize II}}} is the compatibility condition of (32.4.1) with

32.4.6\mathbf{A}(z,\lambda)=-i(4\lambda^{2}+2w^{2}+z)\begin{bmatrix}1&0\\
0&-1\end{bmatrix}-2w^{{\prime}}\begin{bmatrix}0&-i\\
i&0\end{bmatrix}+\left(4\lambda w-\frac{\alpha}{\lambda}\right)\begin{bmatrix}0&1\\
1&0\end{bmatrix},
32.4.7\mathbf{B}(z,\lambda)=\begin{bmatrix}-i\lambda&w\\
w&i\lambda\end{bmatrix}.

See Flaschka and Newell (1980).

§32.4(iv) Third Painlevé Equation

The compatibility condition of (32.4.1) with

32.4.8\mathbf{A}(z,\lambda)=\begin{bmatrix}\tfrac{1}{4}z&0\\
0&-\tfrac{1}{4}z\end{bmatrix}+\begin{bmatrix}-\tfrac{1}{2}\theta _{{\infty}}&u_{0}\\
u_{1}&\tfrac{1}{2}\theta _{{\infty}}\end{bmatrix}\dfrac{1}{\lambda}+\begin{bmatrix}v_{0}-\tfrac{1}{4}z&-v_{1}v_{0}\\
\ifrac{(v_{0}-\tfrac{1}{2}z)}{v_{1}}&\tfrac{1}{4}z-v_{0}\end{bmatrix}\frac{1}{\lambda^{2}},
32.4.9\mathbf{B}(z,\lambda)=\begin{bmatrix}\tfrac{1}{4}&0\\
0&-\tfrac{1}{4}\end{bmatrix}\lambda+\begin{bmatrix}0&u_{0}\\
u_{1}&0\end{bmatrix}\dfrac{1}{z}-\begin{bmatrix}v_{0}-\tfrac{1}{4}z&-v_{1}v_{0}\\
\ifrac{(v_{0}-\tfrac{1}{2}z)}{v_{1}}&\tfrac{1}{4}z-v_{0}\end{bmatrix}\frac{1}{z\lambda},

where \theta _{\infty} is an arbitrary constant, is

32.4.10zu_{0}^{{\prime}}=\theta _{{\infty}}u_{0}-zv_{0}v_{1},
32.4.11zu_{1}^{{\prime}}=-\theta _{{\infty}}u_{1}-(\ifrac{z(2v_{0}-z)}{(2v_{1})}),
32.4.12zv_{0}^{{\prime}}=2v_{0}u_{1}v_{1}+v_{0}+(u_{0}(2v_{0}-z)/v_{1}),
32.4.13zv_{1}^{{\prime}}=2u_{0}-2u_{1}v_{1}^{2}-\theta _{{\infty}}v_{1}.

If w=-u_{0}/(v_{0}v_{1}), then

32.4.14zw^{{\prime}}=(4v_{0}-z)w^{2}+(2\theta _{{\infty}}-1)w+z,

and w satisfies \mbox{P}_{{\mbox{\scriptsize III}}} with

32.4.15(\alpha,\beta,\gamma,\delta)=\left(2\theta _{0},2(1-\theta _{{\infty}}),1,-1\right),

where

32.4.16\theta _{0}=\frac{4v_{0}}{z}\left(\theta _{{\infty}}\left(1-\frac{z}{4v_{0}}\right)+\frac{z-2v_{0}}{2v_{0}v_{1}}u_{0}+u_{1}v_{1}\right).

Note that the right-hand side of the last equation is a first integral of the system (32.4.10)–(32.4.13).

§32.4(v) Other Painlevé Equations

For isomonodromy problems for \mbox{P}_{{\mbox{\scriptsize IV}}}, \mbox{P}_{{\mbox{\scriptsize V}}}, and \mbox{P}_{{\mbox{\scriptsize VI}}} see Jimbo and Miwa (1981).