About the Project

of type 3

AdvancedHelp

(0.004 seconds)

21—30 of 71 matching pages

21: 9.7 Asymptotic Expansions
9.7.1 ζ = 2 3 z 3 / 2 .
u k = ( 2 k + 1 ) ( 2 k + 3 ) ( 2 k + 5 ) ( 6 k 1 ) 216 k k ! = ( 6 k 5 ) ( 6 k 3 ) ( 6 k 1 ) ( 2 k 1 ) 216 k u k 1 ,
§9.7(ii) Poincaré-Type Expansions
where ξ = 2 3 x 3 / 2 . …
9.7.17 { 1 , | ph z | 1 3 π , min ( | csc ( ph ζ ) | , χ ( n + σ ) + 1 ) , 1 3 π | ph z | 2 3 π , 2 π ( n + σ ) | cos ( ph ζ ) | n + σ + χ ( n + σ ) + 1 , 2 3 π | ph z | < π ,
22: Bibliography H
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ ( 2 m + 1 ) . Commun. Appl. Anal. 1 (1), pp. 15–32.
  • M. Hauss (1998) A Boole-type Formula involving Conjugate Euler Polynomials. In Charlemagne and his Heritage. 1200 Years of Civilization and Science in Europe, Vol. 2 (Aachen, 1995), P.L. Butzer, H. Th. Jongen, and W. Oberschelp (Eds.), pp. 361–375.
  • T. H. Hildebrandt (1938) Definitions of Stieltjes Integrals of the Riemann Type. Amer. Math. Monthly 45 (5), pp. 265–278.
  • P. Holmes and D. Spence (1984) On a Painlevé-type boundary-value problem. Quart. J. Mech. Appl. Math. 37 (4), pp. 525–538.
  • M. N. Huxley (2003) Exponential sums and lattice points. III. Proc. London Math. Soc. (3) 87 (3), pp. 591–609.
  • 23: 19.25 Relations to Other Functions
    24: 20.8 Watson’s Expansions
    20.8.1 θ 2 ( 0 , q ) θ 3 ( z , q ) θ 4 ( z , q ) θ 2 ( z , q ) = 2 n = ( 1 ) n q n 2 e i 2 n z q n e i z + q n e i z .
    This reference and Bellman (1961, pp. 46–47) include other expansions of this type.
    25: 15.9 Relations to Other Functions
    15.9.26 D ( k ) = π 4 F ( 1 2 , 3 2 2 ; k 2 ) .
    26: 23.10 Addition Theorems and Other Identities
    For further addition-type identities for the σ -function see Lawden (1989, §6.4). … (23.10.8) continues to hold when e 1 , e 2 , e 3 are permuted cyclically. … For n = 2 , 3 , , …
    23.10.15 A n = ( π 2 G 2 ω 1 ) n 2 1 q n ( n 1 ) / 2 i n 1 exp ( ( n 1 ) η 1 3 ω 1 ( ( 2 n 1 ) ( ω 1 2 + ω 3 2 ) + 3 ( n 1 ) ω 1 ω 3 ) ) ,
    Also, when 𝕃 is replaced by c 𝕃 the lattice invariants g 2 and g 3 are divided by c 4 and c 6 , respectively. …
    27: 19.5 Maclaurin and Related Expansions
    28: Bibliography G
  • G. Gasper (1972) An inequality of Turán type for Jacobi polynomials. Proc. Amer. Math. Soc. 32, pp. 435–439.
  • G. Gasper (1975) Formulas of the Dirichlet-Mehler Type. In Fractional Calculus and its Applications, B. Ross (Ed.), Lecture Notes in Math., Vol. 457, pp. 207–215.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2003a) Computation of the modified Bessel function of the third kind of imaginary orders: Uniform Airy-type asymptotic expansion. J. Comput. Appl. Math. 153 (1-2), pp. 225–234.
  • D. P. Gupta and M. E. Muldoon (2000) Riccati equations and convolution formulae for functions of Rayleigh type. J. Phys. A 33 (7), pp. 1363–1368.
  • 29: Bibliography K
  • T. Kasuga and R. Sakai (2003) Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121 (1), pp. 13–53.
  • R. B. Kearfott (1996) Algorithm 763: INTERVAL_ARITHMETIC: A Fortran 90 module for an interval data type. ACM Trans. Math. Software 22 (4), pp. 385–392.
  • J. Koekoek, R. Koekoek, and H. Bavinck (1998) On differential equations for Sobolev-type Laguerre polynomials. Trans. Amer. Math. Soc. 350 (1), pp. 347–393.
  • T. H. Koornwinder (1975a) A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, pp. 145–159.
  • T. H. Koornwinder (1992) Askey-Wilson Polynomials for Root Systems of Type B C . In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, pp. 189–204.
  • 30: 18.11 Relations to Other Functions
    18.11.3 H n ( x ) = 2 n U ( 1 2 n , 1 2 , x 2 ) = 2 n x U ( 1 2 n + 1 2 , 3 2 , x 2 ) = 2 1 2 n e 1 2 x 2 U ( n 1 2 , 2 1 2 x ) ,
    18.11.4 𝐻𝑒 n ( x ) = 2 1 2 n U ( 1 2 n , 1 2 , 1 2 x 2 ) = 2 1 2 ( n 1 ) x U ( 1 2 n + 1 2 , 3 2 , 1 2 x 2 ) = e 1 4 x 2 U ( n 1 2 , x ) .
    §18.11(ii) Formulas of Mehler–Heine Type