Digital Library of Mathematical Functions
About the Project
NIST
18 Orthogonal PolynomialsClassical Orthogonal Polynomials

§18.10 Integral Representations

Contents

§18.10(i) Dirichlet-Mehler-Type Integral Representations

Ultraspherical

18.10.1 Pn(α,α)(cosθ)Pn(α,α)(1)=Cn(α+12)(cosθ)Cn(α+12)(1)=2α+12Γ(α+1)π12Γ(α+12)(sinθ)-2α0θcos((n+α+12)ϕ)(cosϕ-cosθ)-α+12ϕ,
0<θ<π, α>-12.

Legendre

18.10.2 Pn(cosθ)=212π0θcos((n+12)ϕ)(cosϕ-cosθ)12ϕ,
0<θ<π.

Generalizations of (18.10.1) are given in Gasper (1975, (6),(8)) and Koornwinder (1975a, (5.7),(5.8)).

§18.10(ii) Laplace-Type Integral Representations

Jacobi

18.10.3 Pn(α,β)(cosθ)Pn(α,β)(1)=2Γ(α+1)π12Γ(α-β)Γ(β+12)010π((cos12θ)2-r2(sin12θ)2+rsinθcosϕ)n×(1-r2)α-β-1r2β+1(sinϕ)2βϕr,
α>β>-12.

Ultraspherical

18.10.4 Pn(α,α)(cosθ)Pn(α,α)(1)=Cn(α+12)(cosθ)Cn(α+12)(1)=Γ(α+1)π12Γ(α+12)0π(cosθ+sinθcosϕ)n(sinϕ)2αϕ,
α>-12.

Legendre

18.10.5 Pn(cosθ)=1π0π(cosθ+sinθcosϕ)nϕ.

Laguerre

18.10.6 Ln(α)(x2)=2(-1)nπ12Γ(α+12)n!00π(x2-r2+2xrcosϕ)n-r2×r2α+1(sinϕ)2αϕr,
α>-12.

Hermite

18.10.7 Hn(x)=2nπ12-(x+t)n-t2t.

§18.10(iii) Contour Integral Representations

Table 18.10.1 gives contour integral representations of the form

18.10.8 pn(x)=g0(x)2πC(g1(z,x))ng2(z,x)(z-c)-1z

for the Jacobi, Laguerre, and Hermite polynomials. Here C is a simple closed contour encircling z=c once in the positive sense.

Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
pn(x) g0(x) g1(z,x) g2(z,x) c Conditions
Pn(α,β)(x) (1-x)-α(1+x)-β z2-12(z-x) (1-z)α(1+z)β x ±1 outside C.
Cn(λ)(x) 1 z-1 (1-2xz+z2)-λ 0 ±θ outside C (where x=cosθ).
Tn(x) 1 z-1 1-xz1-2xz+z2 0
Un(x) 1 z-1 (1-2xz+z2)-1 0
Pn(x) 1 z-1 (1-2xz+z2)-12 0
Pn(x) 1 z2-12(z-x) 1 x
Ln(α)(x) xx-α z(z-x)-1 zα-z x 0 outside C.
Hn(x)/n! 1 z-1 2xz-z2 0
Hen(x)/n! 1 z-1 xz-12z2 0

§18.10(iv) Other Integral Representations

Laguerre

18.10.9 Ln(α)(x)=xx-12αn!0-ttn+12αJα(2xt)t,
α>-1.

For the Bessel function Jν(z) see §10.2(ii).

Hermite

18.10.10 Hn(x)=(-2)nx2π12--t2tn2xtt=2n+1π12x20-t2tncos(2xt-12nπ)t.

See also §18.17.