About the Project

quantum systems

AdvancedHelp

(0.002 seconds)

11—20 of 28 matching pages

11: 13.28 Physical Applications
§13.28(i) Exact Solutions of the Wave Equation
For potentials in quantum mechanics that are solvable in terms of confluent hypergeometric functions see Negro et al. (2000). …
§13.28(iii) Other Applications
For dynamics of many-body systems see Meden and Schönhammer (1992); for tomography see D’Ariano et al. (1994); for generalized coherent states see Barut and Girardello (1971); for relativistic cosmology see Crisóstomo et al. (2004).
12: 8.24 Physical Applications
§8.24(i) Incomplete Gamma Functions
The function γ ( a , x ) appears in: discussions of power-law relaxation times in complex physical systems (Sornette (1998)); logarithmic oscillations in relaxation times for proteins (Metzler et al. (1999)); Gaussian orbitals and exponential (Slater) orbitals in quantum chemistry (Shavitt (1963), Shavitt and Karplus (1965)); population biology and ecological systems (Camacho et al. (2002)). …
13: Errata
  • Chapter 18 Additions

    The following additions were made in Chapter 18:

    • Section 18.2

      In Subsection 18.2(i), Equation (18.2.1_5); the paragraph title “Orthogonality on Finite Point Sets” has been changed to “Orthogonality on Countable Sets”, and there are minor changes in the presentation of the final paragraph, including a new equation (18.2.4_5). The presentation of Subsection 18.2(iii) has changed, Equation (18.2.5_5) was added and an extra paragraph on standardizations has been included. The presentation of Subsection 18.2(iv) has changed and it has been expanded with two extra paragraphs and several new equations, (18.2.9_5), (18.2.11_1)–(18.2.11_9). Subsections 18.2(v) (with (18.2.12_5), (18.2.14)–(18.2.17)) and 18.2(vi) (with (18.2.17)–(18.2.20)) have been expanded. New subsections, 18.2(vii)18.2(xii), with Equations (18.2.21)–(18.2.46),

    • Section 18.3

      A new introduction, minor changes in the presentation, and three new paragraphs.

    • Section 18.5

      Extra details for Chebyshev polynomials, and Equations (18.5.4_5), (18.5.11_1)–(18.5.11_4), (18.5.17_5).

    • Section 18.8

      Line numbers and two extra rows were added to Table 18.8.1.

    • Section 18.9

      Subsection 18.9(i) has been expanded, and 18.9(iii) has some additional explanation. Equations (18.9.2_1), (18.9.2_2), (18.9.18_5) and Table 18.9.2 were added.

    • Section 18.12

      Three extra generating functions, (18.12.2_5), (18.12.3_5), (18.12.17).

    • Section 18.14

      Equation (18.14.3_5). New subsection, 18.14(iv), with Equations (18.14.25)–(18.14.27).

    • Section 18.15

      Equation (18.15.4_5).

    • Section 18.16

      The title of Subsection 18.16(iii) was changed from “Ultraspherical and Legendre” to “Ultraspherical, Legendre and Chebyshev”. New subsection, 18.16(vii) Discriminants, with Equations (18.16.19)–(18.16.21).

    • Section 18.17

      Extra explanatory text at many places and seven extra integrals (18.17.16_5), (18.17.21_1)–(18.17.21_3), (18.17.28_5), (18.17.34_5), (18.17.41_5).

    • Section 18.18

      Extra explanatory text at several places and the title of Subsection 18.18(iv) was changed from “Connection Formulas” to “Connection and Inversion Formulas”.

    • Section 18.19

      A new introduction.

    • Section 18.21

      Equation (18.21.13).

    • Section 18.25

      Extra explanatory text in Subsection 18.25(i) and the title of Subsection 18.25(ii) was changed from “Weights and Normalizations: Continuous Cases” to “Weights and Standardizations: Continuous Cases”.

    • Section 18.26

      In Subsection 18.26(i) an extra paragraph on dualities has been included, with Equations (18.26.4_1), (18.26.4_2).

    • Section 18.27

      Extra text at the start of this section and twenty seven extra formulas, (18.27.4_1), (18.27.4_2), (18.27.6_5), (18.27.9_5), (18.27.12_5), (18.27.14_1)–(18.27.14_6), (18.27.17_1)–(18.27.17_3), (18.27.20_5), (18.27.25), (18.27.26), (18.28.1_5).

    • Section 18.28

      A big expansion. Six extra formulas in Subsection 18.28(ii) ((18.28.6_1)–(18.28.6_5)) and three extra formulas in Subsection 18.28(viii) ((18.28.21)–(18.28.23)). New subsections, 18.28(ix)18.28(xi), with Equations (18.28.23)–(18.28.34).

    • Section 18.30

      Originally this section did not have subsections. The original seven formulas have now more explanatory text and are split over two subsections. New subsections 18.30(iii)18.30(viii), with Equations (18.30.8)–(18.30.31).

    • Section 18.32

      This short section has been expanded, with Equation (18.32.2).

    • Section 18.33

      Additional references and a new large subsection, 18.33(vi), including Equations (18.33.17)–(18.33.32).

    • Section 18.34

      This section has been expanded, including an extra orthogonality relations (18.34.5_5), (18.34.7_1)–(18.34.7_3).

    • Section 18.35

      This section on Pollaczek polynomials has been significantly updated with much more explanations and as well to include the Pollaczek polynomials of type 3 which are the most general with three free parameters. The Pollaczek polynomials which were previously treated, namely those of type 1 and type 2 are special cases of the type 3 Pollaczek polynomials. In the first paragraph of this section an extensive description of the relations between the three types of Pollaczek polynomials is given which was lacking previously. Equations (18.35.0_5), (18.35.2_1)–(18.35.2_5), (18.35.4_5), (18.35.6_1)–(18.35.6_6), (18.35.10).

    • Section 18.36

      This section on miscellaneous polynomials has been expanded with new subsections, 18.36(v) on non-classical Laguerre polynomials and 18.36(vi) with examples of exceptional orthogonal polynomials, with Equations (18.36.1)–(18.36.10). In the titles of Subsections 18.36(ii) and 18.36(iii) we replaced “OP’s” by “Orthogonal Polynomials”.

    • Section 18.38

      The paragraphs of Subsection 18.38(i) have been re-ordered and one paragraph was added. The title of Subsection 18.38(ii) was changed from “Classical OP’s: Other Applications” to “Classical OP’s: Mathematical Developments and Applications”. Subsection 18.38(iii) has been expanded with seven new paragraphs, and Equations (18.38.4)–(18.38.11).

    • Section 18.39

      This section was completely rewritten. The previous 18.39(i) Quantum Mechanics has been replaced by Subsections 18.39(i) Quantum Mechanics and 18.39(ii) A 3D Separable Quantum System, the Hydrogen Atom, containing the same essential information; the original content of the subsection is reproduced below for reference. Subsection 18.39(ii) was moved to 18.39(v) Other Applications. New subsections, 18.39(iii) Non Classical Weight Functions of Utility in DVR Method in the Physical Sciences, 18.39(iv) Coulomb–Pollaczek Polynomials and J-Matrix Methods; Equations (18.39.7)–(18.39.48); and Figures 18.39.1, 18.39.2.

      The original text of 18.39(i) Quantum Mechanics was:

      “Classical OP’s appear when the time-dependent Schrödinger equation is solved by separation of variables. Consider, for example, the one-dimensional form of this equation for a particle of mass m with potential energy V ( x ) :

      errata.1 ( 2 2 m 2 x 2 + V ( x ) ) ψ ( x , t ) = i t ψ ( x , t ) ,

      where is the reduced Planck’s constant. On substituting ψ ( x , t ) = η ( x ) ζ ( t ) , we obtain two ordinary differential equations, each of which involve the same constant E . The equation for η ( x ) is

      errata.2 d 2 η d x 2 + 2 m 2 ( E V ( x ) ) η = 0 .

      For a harmonic oscillator, the potential energy is given by

      errata.3 V ( x ) = 1 2 m ω 2 x 2 ,

      where ω is the angular frequency. For (18.39.2) to have a nontrivial bounded solution in the interval < x < , the constant E (the total energy of the particle) must satisfy

      errata.4 E = E n = ( n + 1 2 ) ω , n = 0 , 1 , 2 , .

      The corresponding eigenfunctions are

      errata.5 η n ( x ) = π 1 4 2 1 2 n ( n ! b ) 1 2 H n ( x / b ) e x 2 / 2 b 2 ,

      where b = ( / m ω ) 1 / 2 , and H n is the Hermite polynomial. For further details, see Seaborn (1991, p. 224) or Nikiforov and Uvarov (1988, pp. 71-72).

      A second example is provided by the three-dimensional time-independent Schrödinger equation

      errata.6 2 ψ + 2 m 2 ( E V ( 𝐱 ) ) ψ = 0 ,

      when this is solved by separation of variables in spherical coordinates (§1.5(ii)). The eigenfunctions of one of the separated ordinary differential equations are Legendre polynomials. See Seaborn (1991, pp. 69-75).

      For a third example, one in which the eigenfunctions are Laguerre polynomials, see Seaborn (1991, pp. 87-93) and Nikiforov and Uvarov (1988, pp. 76-80 and 320-323).”

    • Section 18.40

      The old section is now Subsection 18.40(i) and a large new subsection, 18.40(ii), on the classical moment problem has been added, with formulae (18.40.1)–(18.40.10) and Figures 18.40.1, 18.40.2.

  • 14: 32.16 Physical Applications
    §32.16 Physical Applications
    Statistical Physics
    Statistical physics, especially classical and quantum spin models, has proved to be a major area for research problems in the modern theory of Painlevé transcendents. …
    Integrable Continuous Dynamical Systems
    For applications in 2D quantum gravity and related aspects of the enumerative topology see Di Francesco et al. (1995). …
    15: 28.33 Physical Applications
  • Daymond (1955) for vibrating systems.

  • If the parameters of a physical system vary periodically with time, then the question of stability arises, for example, a mathematical pendulum whose length varies as cos ( 2 ω t ) . …
  • McLachlan (1947, Chapter XV) for amplitude distortion in moving-coil loud-speakers, frequency modulation, dynamical systems, and vibration of stretched strings.

  • Meixner and Schäfke (1954, §§4.1, 4.2, and 4.7) for quantum mechanical problems and rotation of molecules.

  • Fukui and Horiguchi (1992) for quantum theory.

  • 16: Tom H. Koornwinder
    Koornwinder has published numerous papers on special functions, harmonic analysis, Lie groups, quantum groups, computer algebra, and their interrelations, including an interpretation of Askey–Wilson polynomials on quantum SU(2), and a five-parameter extension (the Macdonald–Koornwinder polynomials) of Macdonald’s polynomials for root systems BC. …
    17: Bibliography I
  • IEEE (2019) IEEE International Standard for Information Technology—Microprocessor Systems—Floating-Point arithmetic: IEEE Std 754-2019. The Institute of Electrical and Electronics Engineers, Inc..
  • M. E. H. Ismail (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • M. E. H. Ismail (2009) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • C. Itzykson and J. Drouffe (1989) Statistical Field Theory: Strong Coupling, Monte Carlo Methods, Conformal Field Theory, and Random Systems. Vol. 2, Cambridge University Press, Cambridge.
  • C. Itzykson and J. B. Zuber (1980) Quantum Field Theory. International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York.
  • 18: Bibliography K
  • V. Kac and P. Cheung (2002) Quantum Calculus. Universitext, Springer-Verlag, New York.
  • C. Kassel (1995) Quantum Groups. Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York.
  • J. Keating (1993) The Riemann Zeta-Function and Quantum Chaology. In Quantum Chaos (Varenna, 1991), Proc. Internat. School of Phys. Enrico Fermi, CXIX, pp. 145–185.
  • T. H. Koornwinder (1994) Compact quantum groups and q -special functions. In Representations of Lie Groups and Quantum Groups, Pitman Res. Notes Math. Ser., Vol. 311, pp. 46–128.
  • S. G. Krivoshlykov (1994) Quantum-Theoretical Formalism for Inhomogeneous Graded-Index Waveguides. Akademie Verlag, Berlin-New York.
  • 19: 14.31 Other Applications
    The conical functions 𝖯 1 2 + i τ m ( x ) appear in boundary-value problems for the Laplace equation in toroidal coordinates (§14.19(i)) for regions bounded by cones, by two intersecting spheres, or by one or two confocal hyperboloids of revolution (Kölbig (1981)). …
    §14.31(iii) Miscellaneous
    Many additional physical applications of Legendre polynomials and associated Legendre functions include solution of the Helmholtz equation, as well as the Laplace equation, in spherical coordinates (Temme (1996b)), quantum mechanics (Edmonds (1974)), and high-frequency scattering by a sphere (Nussenzveig (1965)). …
    20: Mourad E. H. Ismail
    His well-known book Classical and Quantum Orthogonal Polynomials in One Variable was published by Cambridge University Press in 2005 and reprinted with corrections in paperback in Ismail (2009). … Ismail serves on several editorial boards including the Cambridge University Press book series Encyclopedia of Mathematics and its Applications, and on the editorial boards of 9 journals including Proceedings of the American Mathematical Society (Integrable Systems and Special Functions Editor); Constructive Approximation; Journal of Approximation Theory; and Integral Transforms and Special Functions. …