About the Project

Lagrange formula for reversion of series

AdvancedHelp

(0.002 seconds)

21—30 of 410 matching pages

21: 14.28 Sums
§14.28(ii) Heine’s Formula
The series converges uniformly for z 1 outside or on 1 , and z 2 within or on 2 . …
22: 6.18 Methods of Computation
For small or moderate values of x and | z | , the expansion in power series6.6) or in series of spherical Bessel functions (§6.10(ii)) can be used. For large x or | z | these series suffer from slow convergence or cancellation (or both). … Also, other ranges of ph z can be covered by use of the continuation formulas of §6.4. … For example, the Gauss–Laguerre formula3.5(v)) can be applied to (6.2.2); see Todd (1954) and Tseng and Lee (1998). For an application of the Gauss–Legendre formula3.5(v)) see Tooper and Mark (1968). …
23: 25.13 Periodic Zeta Function
25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
25.13.2 F ( x , s ) = Γ ( 1 s ) ( 2 π ) 1 s ( e π i ( 1 s ) / 2 ζ ( 1 s , x ) + e π i ( s 1 ) / 2 ζ ( 1 s , 1 x ) ) , 0 < x < 1 , s > 1 ,
25.13.3 ζ ( 1 s , x ) = Γ ( s ) ( 2 π ) s ( e π i s / 2 F ( x , s ) + e π i s / 2 F ( x , s ) ) , s > 0 if 0 < x < 1 ; s > 1 if x = 1 .
24: 25.10 Zeros
§25.10(ii) Riemann–Siegel Formula
Sign changes of Z ( t ) are determined by multiplying (25.9.3) by exp ( i ϑ ( t ) ) to obtain the Riemann–Siegel formula:
25.10.3 Z ( t ) = 2 n = 1 m cos ( ϑ ( t ) t ln n ) n 1 / 2 + R ( t ) , m = t / ( 2 π ) ,
The error term R ( t ) can be expressed as an asymptotic series that begins … Calculations based on the Riemann–Siegel formula reveal that the first ten billion zeros of ζ ( s ) in the critical strip are on the critical line (van de Lune et al. (1986)). …
25: 25.2 Definition and Expansions
§25.2(ii) Other Infinite Series
For further expansions of functions similar to (25.2.1) (Dirichlet series) see §27.4. …
§25.2(iii) Representations by the Euler–Maclaurin Formula
25.2.8 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 s N x x x s + 1 d x , s > 0 , N = 1 , 2 , 3 , .
25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
26: 24.17 Mathematical Applications
Euler–Maclaurin Summation Formula
Boole Summation Formula
Bernoulli and Euler numbers and polynomials occur in: number theory via (24.4.7), (24.4.8), and other identities involving sums of powers; the Riemann zeta function and L -series25.15, Apostol (1976), and Ireland and Rosen (1990)); arithmetic of cyclotomic fields and the classical theory of Fermat’s last theorem (Ribenboim (1979) and Washington (1997)); p -adic analysis (Koblitz (1984, Chapter 2)). …
27: 18.18 Sums
§18.18(v) Linearization Formulas
Ultraspherical
Hermite
Formula (18.18.27) is known as the Hille–Hardy formula. …
Hermite
28: 5.19 Mathematical Applications
As shown in Temme (1996b, §3.4), the results given in §5.7(ii) can be used to sum infinite series of rational functions. …
29: 15.6 Integral Representations
15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
15.6.3 𝐅 ( a , b ; c ; z ) = e b π i Γ ( 1 b ) 2 π i Γ ( c b ) ( 0 + ) t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; b 1 , 2 , 3 , , ( c b ) > 0 .
15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .
However, this reverses the direction of the integration contour, and in consequence (15.6.5) would need to be multiplied by 1 . …
30: Bibliography W
  • P. L. Walker (2012) Reduction formulae for products of theta functions. J. Res. Nat. Inst. Standards and Technology 117, pp. 297–303.
  • J. Wimp (1968) Recursion formulae for hypergeometric functions. Math. Comp. 22 (102), pp. 363–373.
  • J. Wimp (1987) Explicit formulas for the associated Jacobi polynomials and some applications. Canad. J. Math. 39 (4), pp. 983–1000.
  • R. Wong and H. Y. Zhang (2009a) On the connection formulas of the fourth Painlevé transcendent. Anal. Appl. (Singap.) 7 (4), pp. 419–448.
  • R. Wong (1982) Quadrature formulas for oscillatory integral transforms. Numer. Math. 39 (3), pp. 351–360.