15.5 Derivatives and Contiguous Functions15.7 Continued Fractions

§15.6 Integral Representations

The function \mathop{\mathbf{F}\/}\nolimits\!\left(a,b;c;z\right) (not \mathop{F\/}\nolimits\!\left(a,b;c;z\right)) has the following integral representations:

15.6.1\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(b\right)\mathop{\Gamma\/}\nolimits\!\left(c-b\right)}\int _{0}^{1}\frac{t^{{b-1}}(1-t)^{{c-b-1}}}{(1-zt)^{a}}dt,\realpart{c}>\realpart{b}>0.
15.6.2\frac{\mathop{\Gamma\/}\nolimits\!\left(1+b-c\right)}{2\pi i\mathop{\Gamma\/}\nolimits\!\left(b\right)}\int _{0}^{{(1+)}}\frac{t^{{b-1}}(t-1)^{{c-b-1}}}{(1-zt)^{a}}dt,c-b\neq 1,2,3,\dots, \realpart{b}>0.
15.6.3e^{{-b\pi i}}\frac{\mathop{\Gamma\/}\nolimits\!\left(1-b\right)}{2\pi i\mathop{\Gamma\/}\nolimits\!\left(c-b\right)}\int _{{\infty}}^{{(0+)}}\frac{t^{{b-1}}(t+1)^{{a-c}}}{(t-zt+1)^{a}}dt,b\neq 1,2,3,\dots, \realpart{(c-b)}>0.
15.6.4e^{{-b\pi i}}\frac{\mathop{\Gamma\/}\nolimits\!\left(1-b\right)}{2\pi i\mathop{\Gamma\/}\nolimits\!\left(c-b\right)}\int _{1}^{{(0+)}}\frac{t^{{b-1}}(1-t)^{{c-b-1}}}{(1-zt)^{a}}dt,b\neq 1,2,3,\dots, \realpart{(c-b)}>0.
15.6.5e^{{-c\pi i}}\mathop{\Gamma\/}\nolimits\!\left(1-b\right)\mathop{\Gamma\/}\nolimits\!\left(1+b-c\right)\*\frac{1}{4\pi^{2}}\int _{A}^{{(0+,1+,0-,1-)}}\frac{t^{{b-1}}(1-t)^{{c-b-1}}}{(1-zt)^{a}}dt,b,c-b\neq 1,2,3,\dots.
15.6.6\frac{1}{2\pi i\mathop{\Gamma\/}\nolimits\!\left(a\right)\mathop{\Gamma\/}\nolimits\!\left(b\right)}\int _{{-i\infty}}^{{i\infty}}\frac{\mathop{\Gamma\/}\nolimits\!\left(a+t\right)\mathop{\Gamma\/}\nolimits\!\left(b+t\right)\mathop{\Gamma\/}\nolimits\!\left(-t\right)}{\mathop{\Gamma\/}\nolimits\!\left(c+t\right)}(-z)^{t}dt,a,b\neq 0,-1,-2,\dots.

These representations are valid when |\mathop{\mathrm{ph}\/}\nolimits\!\left(1-z\right)|<\pi, except (15.6.6) which holds for |\mathop{\mathrm{ph}\/}\nolimits\!\left(-z\right)|<\pi. In all cases the integrands are continuous functions of t on the integration paths, except possibly at the endpoints. In addition:

In (15.6.1) all functions in the integrand assume their principal values.

In (15.6.2) the point \ifrac{1}{z} lies outside the integration contour, t^{{b-1}} and (t-1)^{{c-b-1}} assume their principal values where the contour cuts the interval (1,\infty), and (1-zt)^{a}=1 at t=0.

In (15.6.3) the point \ifrac{1}{(z-1)} lies outside the integration contour, the contour cuts the real axis between t=-1 and 0, at which point \mathop{\mathrm{ph}\/}\nolimits t=\pi and \mathop{\mathrm{ph}\/}\nolimits\!\left(1+t\right)=0.

In (15.6.4) the point \ifrac{1}{z} lies outside the integration contour, and at the point where the contour cuts the negative real axis \mathop{\mathrm{ph}\/}\nolimits t=\pi and \mathop{\mathrm{ph}\/}\nolimits\!\left(1-t\right)=0.

In (15.6.5) the integration contour starts and terminates at a point A on the real axis between 0 and 1. It encircles t=0 and t=1 once in the positive direction, and then once in the negative direction. See Figure 15.6.1. At the starting point \mathop{\mathrm{ph}\/}\nolimits t and \mathop{\mathrm{ph}\/}\nolimits\!\left(1-t\right) are zero. If desired, and as in Figure 5.12.3, the upper integration limit in (15.6.5) can be replaced by (1+,0+,1-,0-). However, this reverses the direction of the integration contour, and in consequence (15.6.5) would need to be multiplied by −1.

In (15.6.6) the integration contour separates the poles of \mathop{\Gamma\/}\nolimits\!\left(a+t\right) and \mathop{\Gamma\/}\nolimits\!\left(b+t\right) from those of \mathop{\Gamma\/}\nolimits\!\left(-t\right), and (-z)^{t} has its principal value.

In (15.6.7) the integration contour separates the poles of \mathop{\Gamma\/}\nolimits\!\left(a+t\right) and \mathop{\Gamma\/}\nolimits\!\left(b+t\right) from those of \mathop{\Gamma\/}\nolimits\!\left(c-a-b-t\right) and \mathop{\Gamma\/}\nolimits\!\left(-t\right), and (1-z)^{t} has its principal value.

In each of (15.6.8) and (15.6.9) all functions in the integrand assume their principal values.

See accompanying text
Figure 15.6.1: t-plane. Contour of integration in (15.6.5). Magnify