5.6 Inequalities5.8 Infinite Products

§5.7 Series Expansions

Contents

§5.7(i) Maclaurin and Taylor Series

Throughout this subsection \mathop{\zeta\/}\nolimits\!\left(k\right) is as in Chapter 25.

5.7.1\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(z\right)}=\sum _{{k=1}}^{\infty}c_{k}z^{k},

where c_{1}=1, c_{2}=\EulerConstant, and

5.7.2(k-1)c_{k}=\EulerConstant c_{{k-1}}-\mathop{\zeta\/}\nolimits\!\left(2\right)c_{{k-2}}+\mathop{\zeta\/}\nolimits\!\left(3\right)c_{{k-3}}-\dots+(-1)^{k}\mathop{\zeta\/}\nolimits\!\left(k-1\right)c_{1},k\geq 3.

For 15D numerical values of c_{k} see Abramowitz and Stegun (1964, p. 256), and for 31D values see Wrench (1968).

For 20D numerical values of the coefficients of the Maclaurin series for \mathop{\Gamma\/}\nolimits\!\left(z+3\right) see Luke (1969b, p. 299).

§5.7(ii) Other Series