6.3 Graphics6.5 Further Interrelations

§6.4 Analytic Continuation

Analytic continuation of the principal value of \mathop{E_{1}\/}\nolimits\!\left(z\right) yields a multi-valued function with branch points at z=0 and z=\infty. The general value of \mathop{E_{1}\/}\nolimits\!\left(z\right) is given by

6.4.1\mathop{E_{1}\/}\nolimits\!\left(z\right)=\mathop{\mathrm{Ein}\/}\nolimits\!\left(z\right)-\mathop{\mathrm{Ln}\/}\nolimits z-\EulerConstant;

compare (6.2.4) and (4.2.6). Thus

6.4.2\mathop{E_{1}\/}\nolimits\!\left(ze^{{2m\pi i}}\right)=\mathop{E_{1}\/}\nolimits\!\left(z\right)-2m\pi i,m\in\Integer,

and

6.4.3\mathop{E_{1}\/}\nolimits\!\left(ze^{{\pm\pi i}}\right)=\mathop{\mathrm{Ein}\/}\nolimits\!\left(-z\right)-\mathop{\ln\/}\nolimits z-\EulerConstant\mp\pi i,|\mathop{\mathrm{ph}\/}\nolimits z|\leq\pi.

The general values of the other functions are defined in a similar manner, and

Unless indicated otherwise, in the rest of this chapter and elsewhere in the DLMF the functions \mathop{E_{1}\/}\nolimits\!\left(z\right), \mathop{\mathrm{Ci}\/}\nolimits\!\left(z\right), \mathop{\mathrm{Chi}\/}\nolimits\!\left(z\right), \mathop{\mathrm{f}\/}\nolimits\!\left(z\right), and \mathop{\mathrm{g}\/}\nolimits\!\left(z\right) assume their principal values, that is, the branches that are real on the positive real axis and two-valued on the negative real axis.