About the Project

Bailey 2F1(-1) sum

AdvancedHelp

(0.015 seconds)

11—20 of 817 matching pages

11: 16.10 Expansions in Series of F q p Functions
β–Ί
16.10.1 F q + s p + r ⁑ ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ⁒ ΞΆ ) = k = 0 ( 𝐚 ) k ⁒ ( Ξ± ) k ⁒ ( Ξ² ) k ⁒ ( z ) k ( 𝐛 ) k ⁒ ( Ξ³ + k ) k ⁒ k ! ⁒ F q + 1 p + 2 ⁑ ( Ξ± + k , Ξ² + k , a 1 + k , , a p + k Ξ³ + 2 ⁒ k + 1 , b 1 + k , , b q + k ; z ) ⁒ F s + 2 r + 2 ⁑ ( k , Ξ³ + k , c 1 , , c r Ξ± , Ξ² , d 1 , , d s ; ΞΆ ) .
β–Ί β–ΊWhen | ΞΆ 1 | < 1 the series on the right-hand side converges in the half-plane ⁑ z < 1 2 . β–ΊExpansions of the form n = 1 ( ± 1 ) n ⁒ F p + 1 p ⁑ ( 𝐚 ; 𝐛 ; n 2 ⁒ z 2 ) are discussed in Miller (1997), and further series of generalized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov et al. (1990, §§5.3, 6.8–6.9).
12: 26.21 Tables
β–ΊAndrews (1976) contains tables of the number of unrestricted partitions, partitions into odd parts, partitions into parts ± 2 ( mod 5 ) , partitions into parts ± 1 ( mod 5 ) , and unrestricted plane partitions up to 100. …
13: 10.44 Sums
§10.44 Sums
β–Ί
§10.44(i) Multiplication Theorem
β–Ί
§10.44(ii) Addition Theorems
β–Ί
§10.44(iii) Neumann-Type Expansions
β–Ί
§10.44(iv) Compendia
14: 17 q-Hypergeometric and Related Functions
15: 5.7 Series Expansions
β–Ίwhere c 1 = 1 , c 2 = Ξ³ , and … β–Ί
5.7.5 ψ ⁑ ( 1 + z ) = 1 2 ⁒ z Ο€ 2 ⁒ cot ⁑ ( Ο€ ⁒ z ) + 1 z 2 1 + 1 Ξ³ k = 1 ( ΞΆ ⁑ ( 2 ⁒ k + 1 ) 1 ) ⁒ z 2 ⁒ k , | z | < 2 , z 0 , ± 1 .
β–ΊWhen z 0 , 1 , 2 , , … β–Ί
5.7.7 ψ ⁑ ( z + 1 2 ) ψ ⁑ ( z 2 ) = 2 ⁒ k = 0 ( 1 ) k k + z .
β–Ί
5.7.8 ⁑ ψ ⁑ ( 1 + i ⁒ y ) = k = 1 y k 2 + y 2 .
16: 18.33 Polynomials Orthogonal on the Unit Circle
β–ΊInstead of (18.33.9) one might take monic OP’s { q n ⁑ ( x ) } with weight function ( 1 + x ) ⁒ w 1 ⁒ ( x ) , and then express q n ⁑ ( 1 2 ⁒ ( z + z 1 ) ) in terms of Ο• 2 ⁒ n ⁑ ( z ± 1 ) or Ο• 2 ⁒ n + 1 ⁑ ( z ± 1 ) . …See Zhedanov (1998, §2). … β–ΊFor the hypergeometric function F 1 2 see §§15.1 and 15.2(i). … β–ΊFor the notation, including the basic hypergeometric function Ο• 1 2 , see §§17.2 and 17.4(i). … β–ΊSee Simon (2005a, p. 2, item (2)). …
17: 10.36 Other Differential Equations
β–ΊThe quantity Ξ» 2 in (10.13.1)–(10.13.6) and (10.13.8) can be replaced by Ξ» 2 if at the same time the symbol π’ž in the given solutions is replaced by 𝒡 . … β–Ί
10.36.1 z 2 ⁒ ( z 2 + Ξ½ 2 ) ⁒ w ′′ + z ⁒ ( z 2 + 3 ⁒ Ξ½ 2 ) ⁒ w ( ( z 2 + Ξ½ 2 ) 2 + z 2 Ξ½ 2 ) ⁒ w = 0 , w = 𝒡 Ξ½ ⁑ ( z ) ,
β–Ί
10.36.2 z 2 ⁒ w ′′ + z ⁒ ( 1 ± 2 ⁒ z ) ⁒ w + ( ± z Ξ½ 2 ) ⁒ w = 0 , w = e βˆ“ z ⁒ 𝒡 Ξ½ ⁑ ( z ) .
18: 19.21 Connection Formulas
β–Ί
19.21.1 R F ⁑ ( 0 , z + 1 , z ) ⁒ R D ⁑ ( 0 , z + 1 , 1 ) + R D ⁑ ( 0 , z + 1 , z ) ⁒ R F ⁑ ( 0 , z + 1 , 1 ) = 3 ⁒ Ο€ / ( 2 ⁒ z ) , z β„‚ βˆ– ( , 0 ] .
β–Ί
19.21.4 R F ⁑ ( 0 , z 1 , z ) = R F ⁑ ( 0 , 1 z , 1 ) βˆ“ i ⁒ R F ⁑ ( 0 , z , 1 ) ,
β–Ί
19.21.5 2 ⁒ R G ⁑ ( 0 , z 1 , z ) = 2 ⁒ R G ⁑ ( 0 , 1 z , 1 ) ± i ⁒ 2 ⁒ R G ⁑ ( 0 , z , 1 ) + ( z 1 ) ⁒ R F ⁑ ( 0 , 1 z , 1 ) βˆ“ i ⁒ z ⁒ R F ⁑ ( 0 , z , 1 ) .
β–Ί
19.21.8 R D ⁑ ( y , z , x ) + R D ⁑ ( z , x , y ) + R D ⁑ ( x , y , z ) = 3 ⁒ x 1 / 2 ⁒ y 1 / 2 ⁒ z 1 / 2 ,
β–Ί
19.21.11 6 ⁒ R G ⁑ ( x , y , z ) = 3 ⁒ ( x + y + z ) ⁒ R F ⁑ ( x , y , z ) x 2 ⁒ R D ⁑ ( y , z , x ) = x ⁒ ( y + z ) ⁒ R D ⁑ ( y , z , x ) ,
19: 7.5 Interrelations
β–Ί
7.5.6 e ± 1 2 ⁒ Ο€ ⁒ i ⁒ z 2 ⁒ ( g ⁑ ( z ) ± i ⁒ f ⁑ ( z ) ) = 1 2 ⁒ ( 1 ± i ) ( C ⁑ ( z ) ± i ⁒ S ⁑ ( z ) ) .
β–Ί
7.5.7 ΞΆ = 1 2 ⁒ Ο€ ⁒ ( 1 βˆ“ i ) ⁒ z ,
β–Ί
7.5.8 C ⁑ ( z ) ± i ⁒ S ⁑ ( z ) = 1 2 ⁒ ( 1 ± i ) ⁒ erf ⁑ ΞΆ .
β–Ί
7.5.9 C ⁑ ( z ) ± i ⁒ S ⁑ ( z ) = 1 2 ⁒ ( 1 ± i ) ⁒ ( 1 e ± 1 2 ⁒ Ο€ ⁒ i ⁒ z 2 ⁒ w ⁑ ( i ⁒ ΞΆ ) ) .
β–Ί
7.5.10 g ⁑ ( z ) ± i ⁒ f ⁑ ( z ) = 1 2 ⁒ ( 1 ± i ) ⁒ e ΞΆ 2 ⁒ erfc ⁑ ΞΆ .
20: 10.15 Derivatives with Respect to Order
β–Ί
10.15.1 J ± Ξ½ ⁑ ( z ) Ξ½ = ± J ± Ξ½ ⁑ ( z ) ⁒ ln ⁑ ( 1 2 ⁒ z ) βˆ“ ( 1 2 ⁒ z ) ± Ξ½ ⁒ k = 0 ( 1 ) k ⁒ ψ ⁑ ( k + 1 ± Ξ½ ) Ξ“ ⁑ ( k + 1 ± Ξ½ ) ⁒ ( 1 4 ⁒ z 2 ) k k ! ,
β–Ί
10.15.3 J Ξ½ ⁑ ( z ) Ξ½ | Ξ½ = n = Ο€ 2 ⁒ Y n ⁑ ( z ) + n ! 2 ⁒ ( 1 2 ⁒ z ) n ⁒ k = 0 n 1 ( 1 2 ⁒ z ) k ⁒ J k ⁑ ( z ) k ! ⁒ ( n k ) .
β–Ί
10.15.4 Y Ξ½ ⁑ ( z ) Ξ½ | Ξ½ = n = Ο€ 2 ⁒ J n ⁑ ( z ) + n ! 2 ⁒ ( 1 2 ⁒ z ) n ⁒ k = 0 n 1 ( 1 2 ⁒ z ) k ⁒ Y k ⁑ ( z ) k ! ⁒ ( n k ) ,
β–Ί
10.15.6 J Ξ½ ⁑ ( x ) Ξ½ | Ξ½ = 1 2 = 2 Ο€ ⁒ x ⁒ ( Ci ⁑ ( 2 ⁒ x ) ⁒ sin ⁑ x Si ⁑ ( 2 ⁒ x ) ⁒ cos ⁑ x ) ,
β–Ί
10.15.7 J Ξ½ ⁑ ( x ) Ξ½ | Ξ½ = 1 2 = 2 Ο€ ⁒ x ⁒ ( Ci ⁑ ( 2 ⁒ x ) ⁒ cos ⁑ x + Si ⁑ ( 2 ⁒ x ) ⁒ sin ⁑ x ) ,