About the Project
11 Struve and Related FunctionsComputation

§11.14 Tables

  1. §11.14(i) Introduction
  2. §11.14(ii) Struve Functions
  3. §11.14(iii) Integrals
  4. §11.14(iv) Anger–Weber Functions
  5. §11.14(v) Incomplete Functions

§11.14(i) Introduction

For tables before 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960). Tables listed in these Indices are omitted from the subsections that follow.

§11.14(ii) Struve Functions

  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇n(x), 𝐇n(x)Yn(x), and In(x)𝐋n(x) for n=0,1 and x=0(.1)5, x1=0(.01)0.2 to 6D or 7D.

  • Agrest et al. (1982) tabulates 𝐇n(x) and ex𝐋n(x) for n=0,1 and x=0(.001)5(.005)15(.01)100 to 11D.

  • Barrett (1964) tabulates 𝐋n(x) for n=0,1 and x=0.2(.005)4(.05)10(.1)19.2 to 5 or 6S, x=6(.25)59.5(.5)100 to 2S.

  • Zanovello (1975) tabulates 𝐇n(x) for n=4(1)15 and x=0.5(.5)26 to 8D or 9S.

  • Zhang and Jin (1996) tabulates 𝐇n(x) and 𝐋n(x) for n=4(1)3 and x=0(1)20 to 8D or 7S.

§11.14(iii) Integrals

  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0x(I0(t)𝐋0(t))dt and (2/π)xt1𝐇0(t)dt for x=0(.1)5 to 5D or 7D; 0x(𝐇0(t)Y0(t))dt(2/π)lnx, 0x(I0(t)𝐋0(t))dt(2/π)lnx, and xt1(𝐇0(t)Y0(t))dt for x1=0(.01)0.2 to 6D.

  • Agrest et al. (1982) tabulates 0x𝐇0(t)dt and ex0x𝐋0(t)dt for x=0(.001)5(.005)15(.01)100 to 11D.

§11.14(iv) Anger–Weber Functions

  • Bernard and Ishimaru (1962) tabulates 𝐉ν(x) and 𝐄ν(x) for ν=10(.1)10 and x=0(.1)10 to 5D.

  • Jahnke and Emde (1945) tabulates 𝐄n(x) for n=1,2 and x=0(.01)14.99 to 4D.

§11.14(v) Incomplete Functions

  • Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function 𝐇n(x,α) for n=0,1, x=0(.2)10, and α=0(.2)1.4,12π, together with surface plots.