About the Project

inhomogeneous differential equations

AdvancedHelp

(0.003 seconds)

11—18 of 18 matching pages

11: 10.15 Derivatives with Respect to Order
β–Ί
10.15.1 J ± Ξ½ ⁑ ( z ) Ξ½ = ± J ± Ξ½ ⁑ ( z ) ⁒ ln ⁑ ( 1 2 ⁒ z ) βˆ“ ( 1 2 ⁒ z ) ± Ξ½ ⁒ k = 0 ( 1 ) k ⁒ ψ ⁑ ( k + 1 ± Ξ½ ) Ξ“ ⁑ ( k + 1 ± Ξ½ ) ⁒ ( 1 4 ⁒ z 2 ) k k ! ,
β–Ί
10.15.2 Y Ξ½ ⁑ ( z ) Ξ½ = cot ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ ( J Ξ½ ⁑ ( z ) Ξ½ Ο€ ⁒ Y Ξ½ ⁑ ( z ) ) csc ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ J Ξ½ ⁑ ( z ) Ξ½ Ο€ ⁒ J Ξ½ ⁑ ( z ) .
β–Ί
10.15.3 J Ξ½ ⁑ ( z ) Ξ½ | Ξ½ = n = Ο€ 2 ⁒ Y n ⁑ ( z ) + n ! 2 ⁒ ( 1 2 ⁒ z ) n ⁒ k = 0 n 1 ( 1 2 ⁒ z ) k ⁒ J k ⁑ ( z ) k ! ⁒ ( n k ) .
β–ΊFor J Ξ½ ⁑ ( z ) / Ξ½ at Ξ½ = n combine (10.2.4) and (10.15.3). … β–Ί
10.15.5 J Ξ½ ⁑ ( z ) Ξ½ | Ξ½ = 0 = Ο€ 2 ⁒ Y 0 ⁑ ( z ) , Y Ξ½ ⁑ ( z ) Ξ½ | Ξ½ = 0 = Ο€ 2 ⁒ J 0 ⁑ ( z ) .
12: Bibliography E
β–Ί
  • A. Erdélyi (1942a) Integral equations for Heun functions. Quart. J. Math., Oxford Ser. 13, pp. 107–112.
  • β–Ί
  • A. Erdélyi (1942b) The Fuchsian equation of second order with four singularities. Duke Math. J. 9 (1), pp. 48–58.
  • β–Ί
  • A. Erdélyi (1944) Certain expansions of solutions of the Heun equation. Quart. J. Math., Oxford Ser. 15, pp. 62–69.
  • β–Ί
  • W. N. Everitt (2005a) A catalogue of Sturm-Liouville differential equations. In Sturm-Liouville theory, pp. 271–331.
  • β–Ί
  • H. Exton (1983) The asymptotic behaviour of the inhomogeneous Airy function Hi ⁒ ( z ) . Math. Chronicle 12, pp. 99–104.
  • 13: 9.13 Generalized Airy Functions
    §9.13 Generalized Airy Functions
    β–Ί
    §9.13(i) Generalizations from the Differential Equation
    β–Ίare used in approximating solutions to differential equations with multiple turning points; see §2.8(v). … β–ΊAs z β–Ί
    14: Bibliography K
    β–Ί
  • A. A. Kapaev (1988) Asymptotic behavior of the solutions of the Painlevé equation of the first kind. Differ. Uravn. 24 (10), pp. 1684–1695 (Russian).
  • β–Ί
  • A. V. Kitaev, C. K. Law, and J. B. McLeod (1994) Rational solutions of the fifth Painlevé equation. Differential Integral Equations 7 (3-4), pp. 967–1000.
  • β–Ί
  • J. Koekoek, R. Koekoek, and H. Bavinck (1998) On differential equations for Sobolev-type Laguerre polynomials. Trans. Amer. Math. Soc. 350 (1), pp. 347–393.
  • β–Ί
  • J. J. Kovacic (1986) An algorithm for solving second order linear homogeneous differential equations. J. Symbolic Comput. 2 (1), pp. 3–43.
  • β–Ί
  • S. G. Krivoshlykov (1994) Quantum-Theoretical Formalism for Inhomogeneous Graded-Index Waveguides. Akademie Verlag, Berlin-New York.
  • 15: 9.10 Integrals
    β–Ί
    9.10.1 z Ai ⁑ ( t ) ⁒ d t = Ο€ ⁒ ( Ai ⁑ ( z ) ⁒ Gi ⁑ ( z ) Ai ⁑ ( z ) ⁒ Gi ⁑ ( z ) ) ,
    β–Ί
    9.10.2 z Ai ⁑ ( t ) ⁒ d t = Ο€ ⁒ ( Ai ⁑ ( z ) ⁒ Hi ⁑ ( z ) Ai ⁑ ( z ) ⁒ Hi ⁑ ( z ) ) ,
    β–Ί
    9.10.3 z Bi ⁑ ( t ) ⁒ d t = 0 z Bi ⁑ ( t ) ⁒ d t = Ο€ ⁒ ( Bi ⁑ ( z ) ⁒ Gi ⁑ ( z ) Bi ⁑ ( z ) ⁒ Gi ⁑ ( z ) ) = Ο€ ⁒ ( Bi ⁑ ( z ) ⁒ Hi ⁑ ( z ) Bi ⁑ ( z ) ⁒ Hi ⁑ ( z ) ) .
    β–ΊLet w ⁑ ( z ) be any solution of Airy’s equation (9.2.1). … β–Ί
    9.10.18 Ai ⁑ ( z ) = 3 ⁒ z 5 / 4 ⁒ e ( 2 / 3 ) ⁒ z 3 / 2 4 ⁒ Ο€ ⁒ 0 t 3 / 4 ⁒ e ( 2 / 3 ) ⁒ t 3 / 2 ⁒ Ai ⁑ ( t ) z 3 / 2 + t 3 / 2 ⁒ d t , | ph ⁑ z | < 2 3 ⁒ Ο€ .
    16: Bibliography M
    β–Ί
  • A. J. MacLeod (1994) Computation of inhomogeneous Airy functions. J. Comput. Appl. Math. 53 (1), pp. 109–116.
  • β–Ί
  • A. P. Magnus (1995) Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 215–237.
  • β–Ί
  • R. S. Maier (2005) On reducing the Heun equation to the hypergeometric equation. J. Differential Equations 213 (1), pp. 171–203.
  • β–Ί
  • J. C. P. Miller (1950) On the choice of standard solutions for a homogeneous linear differential equation of the second order. Quart. J. Mech. Appl. Math. 3 (2), pp. 225–235.
  • β–Ί
  • K. S. Miller and B. Ross (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York.
  • 17: Bibliography G
    β–Ί
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2004b) Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments. ACM Trans. Math. Software 30 (2), pp. 145–158.
  • β–Ί
  • J. J. Gray (2000) Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd edition, Birkhäuser Boston Inc., Boston, MA.
  • β–Ί
  • V. I. Gromak and N. A. LukaΕ‘evič (1982) Special classes of solutions of Painlevé equations. Differ. Uravn. 18 (3), pp. 419–429 (Russian).
  • β–Ί
  • V. I. Gromak (1975) Theory of Painlevé’s equations. Differ. Uravn. 11 (11), pp. 373–376 (Russian).
  • 18: Bibliography B
    β–Ί
  • A. W. Babister (1967) Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations. The Macmillan Co., New York.
  • β–Ί
  • P. Baldwin (1991) Coefficient functions for an inhomogeneous turning-point problem. Mathematika 38 (2), pp. 217–238.
  • β–Ί
  • G. Birkhoff and G. Rota (1989) Ordinary differential equations. Fourth edition, John Wiley & Sons, Inc., New York.
  • β–Ί
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • β–Ί
  • J. C. Butcher (1987) The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and General Linear Methods. John Wiley & Sons Ltd., Chichester.