About the Project

expansions in modified spherical Bessel functions

AdvancedHelp

(0.013 seconds)

11—20 of 21 matching pages

11: Bibliography H
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • F. E. Harris (2000) Spherical Bessel expansions of sine, cosine, and exponential integrals. Appl. Numer. Math. 34 (1), pp. 95–98.
  • C. J. Howls and A. B. Olde Daalhuis (1999) On the resurgence properties of the uniform asymptotic expansion of Bessel functions of large order. Proc. Roy. Soc. London Ser. A 455, pp. 3917–3930.
  • J. Humblet (1985) Bessel function expansions of Coulomb wave functions. J. Math. Phys. 26 (4), pp. 656–659.
  • G. Hunter and M. Kuriyan (1976) Asymptotic expansions of Mathieu functions in wave mechanics. J. Comput. Phys. 21 (3), pp. 319–325.
  • 12: 10.75 Tables
    §10.75(v) Modified Bessel Functions and their Derivatives
    §10.75(vi) Zeros of Modified Bessel Functions and their Derivatives
    §10.75(viii) Modified Bessel Functions of Imaginary or Complex Order
    §10.75(ix) Spherical Bessel Functions, Modified Spherical Bessel Functions, and their Derivatives
    §10.75(x) Zeros and Associated Values of Derivatives of Spherical Bessel Functions
    13: Bibliography L
  • A. Laforgia (1991) Bounds for modified Bessel functions. J. Comput. Appl. Math. 34 (3), pp. 263–267.
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • K. V. Leung and S. S. Ghaderpanah (1979) An application of the finite element approximation method to find the complex zeros of the modified Bessel function K n ( z ) . Math. Comp. 33 (148), pp. 1299–1306.
  • Y. L. Luke (1959) Expansion of the confluent hypergeometric function in series of Bessel functions. Math. Tables Aids Comput. 13 (68), pp. 261–271.
  • 14: Bibliography V
  • A. L. Van Buren and J. E. Boisvert (2007) Accurate calculation of the modified Mathieu functions of integer order. Quart. Appl. Math. 65 (1), pp. 1–23.
  • B. Ph. van Milligen and A. López Fraguas (1994) Expansion of vacuum magnetic fields in toroidal harmonics. Comput. Phys. Comm. 81 (1-2), pp. 74–90.
  • A. N. Vavreck and W. Thompson (1984) Some novel infinite series of spherical Bessel functions. Quart. Appl. Math. 42 (3), pp. 321–324.
  • R. Vidūnas and N. M. Temme (2002) Symbolic evaluation of coefficients in Airy-type asymptotic expansions. J. Math. Anal. Appl. 269 (1), pp. 317–331.
  • H. Volkmer (1999) Expansions in products of Heine-Stieltjes polynomials. Constr. Approx. 15 (4), pp. 467–480.
  • 15: Bibliography T
  • N. M. Temme (1975) On the numerical evaluation of the modified Bessel function of the third kind. J. Comput. Phys. 19 (3), pp. 324–337.
  • N. M. Temme (1990b) Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions. SIAM J. Math. Anal. 21 (1), pp. 241–261.
  • N. M. Temme (1994c) Steepest descent paths for integrals defining the modified Bessel functions of imaginary order. Methods Appl. Anal. 1 (1), pp. 14–24.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • M. J. Tretter and G. W. Walster (1980) Further comments on the computation of modified Bessel function ratios. Math. Comp. 35 (151), pp. 937–939.
  • 16: 18.34 Bessel Polynomials
    where 𝗄 n is a modified spherical Bessel function (10.49.9), and … expressed in terms of Romanovski–Bessel polynomials, Laguerre polynomials or Whittaker functions, we have …In this limit the finite system of Jacobi polynomials P n ( α , β ) ( x ) which is orthogonal on ( 1 , ) (see §18.3) tends to the finite system of Romanovski–Bessel polynomials which is orthogonal on ( 0 , ) (see (18.34.5_5)). For uniform asymptotic expansions of y n ( x ; a ) as n in terms of Airy functions9.2) see Wong and Zhang (1997) and Dunster (2001c). For uniform asymptotic expansions in terms of Hermite polynomials see López and Temme (1999b). …
    17: Bibliography M
  • A. J. MacLeod (1993) Chebyshev expansions for modified Struve and related functions. Math. Comp. 60 (202), pp. 735–747.
  • T. M. MacRobert (1967) Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications. 3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
  • L. C. Maximon (1991) On the evaluation of the integral over the product of two spherical Bessel functions. J. Math. Phys. 32 (3), pp. 642–648.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Mehrem, J. T. Londergan, and M. H. Macfarlane (1991) Analytic expressions for integrals of products of spherical Bessel functions. J. Phys. A 24 (7), pp. 1435–1453.
  • 18: Bibliography C
  • J. B. Campbell (1980) On Temme’s algorithm for the modified Bessel function of the third kind. ACM Trans. Math. Software 6 (4), pp. 581–586.
  • B. C. Carlson and G. S. Rushbrooke (1950) On the expansion of a Coulomb potential in spherical harmonics. Proc. Cambridge Philos. Soc. 46, pp. 626–633.
  • R. Cicchetti and A. Faraone (2004) Incomplete Hankel and modified Bessel functions: A class of special functions for electromagnetics. IEEE Trans. Antennas and Propagation 52 (12), pp. 3373–3389.
  • W. J. Cody (1983) Algorithm 597: Sequence of modified Bessel functions of the first kind. ACM Trans. Math. Software 9 (2), pp. 242–245.
  • J. P. Coleman and A. J. Monaghan (1983) Chebyshev expansions for the Bessel function J n ( z ) in the complex plane. Math. Comp. 40 (161), pp. 343–366.
  • 19: 18.18 Sums
    Legendre
    Laguerre
    Hermite
    Laguerre
    For the modified Bessel function I ν ( z ) see §10.25(ii). …
    20: Errata
  • Equation (18.34.2)
    18.34.2
    y n ( x ) = y n ( x ; 2 ) = 2 π 1 x 1 e 1 / x 𝗄 n ( x 1 ) ,
    θ n ( x ) = x n y n ( x 1 ) = 2 π 1 x n + 1 e x 𝗄 n ( x )

    This equation was updated to include definitions in terms of the modified spherical Bessel function of the second kind.

  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • Expansion

    §4.13 has been enlarged. The Lambert W -function is multi-valued and we use the notation W k ( x ) , k , for the branches. The original two solutions are identified via Wp ( x ) = W 0 ( x ) and Wm ( x ) = W ± 1 ( x 0 i ) .

    Other changes are the introduction of the Wright ω -function and tree T -function in (4.13.1_2) and (4.13.1_3), simplification formulas (4.13.3_1) and (4.13.3_2), explicit representation (4.13.4_1) for d n W d z n , additional Maclaurin series (4.13.5_1) and (4.13.5_2), an explicit expansion about the branch point at z = e 1 in (4.13.9_1), extending the number of terms in asymptotic expansions (4.13.10) and (4.13.11), and including several integrals and integral representations for Lambert W -functions in the end of the section.

  • Chapters 10 Bessel Functions, 18 Orthogonal Polynomials, 34 3j, 6j, 9j Symbols

    The Legendre polynomial P n was mistakenly identified as the associated Legendre function P n in §§10.54, 10.59, 10.60, 18.18, 18.41, 34.3 (and was thus also affected by the bug reported below). These symbols now link correctly to their definitions. Reported by Roy Hughes on 2022-05-23

  • References

    Bibliographic citations and clarifications have been added, removed, or modified in §§5.6(i), 5.10, 7.8, 7.25(iii), and 32.16.