Digital Library of Mathematical Functions
About the Project
10 Bessel FunctionsSpherical Bessel Functions

§10.54 Integral Representations

10.54.1 jn(z)=zn2n+1n!0πcos(zcosθ)(sinθ)2n+1θ.
10.54.2 jn(z) =(-)n20πzcosθPn(cosθ)sinθθ.
10.54.3 kn(z) =π21-ztPn(t)t,
10.54.4 jn(z) =(-)n+12π(-1+,1+)ztQn(t)t,
10.54.5 hn(1)(z) =(-)n+1π(1+)ztQn(t)t,
hn(2)(z) =(-)n+1π(-1+)ztQn(t)t,

For the Legendre polynomial Pn and the associated Legendre function Qn see §§18.3 and 14.21(i), with μ=0 and ν=n.

Additional integral representations can be obtained by combining the definitions (10.47.3)–(10.47.9) with the results given in §10.9 and §10.32.