About the Project

Mellin transform with respect to lattice parameter

AdvancedHelp

(0.004 seconds)

21—30 of 910 matching pages

21: 12.16 Mathematical Applications
PCFs are also used in integral transforms with respect to the parameter, and inversion formulas exist for kernels containing PCFs. …Integral transforms and sampling expansions are considered in Jerri (1982).
22: 15.6 Integral Representations
§15.6 Integral Representations
15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
However, this reverses the direction of the integration contour, and in consequence (15.6.5) would need to be multiplied by 1 . …
See accompanying text
Figure 15.6.1: t -plane. … Magnify
23: 10.43 Integrals
§10.43(v) Kontorovich–Lebedev Transform
The Kontorovich–Lebedev transform of a function g ( x ) is defined as … For asymptotic expansions of the direct transform (10.43.30) see Wong (1981), and for asymptotic expansions of the inverse transform (10.43.31) see Naylor (1990, 1996). For collections of the Kontorovich–Lebedev transform, see Erdélyi et al. (1954b, Chapter 12), Prudnikov et al. (1986b, pp. 404–412), and Oberhettinger (1972, Chapter 5). … For collections of integrals of the functions I ν ( z ) and K ν ( z ) , including integrals with respect to the order, see Apelblat (1983, §12), Erdélyi et al. (1953b, §§7.7.1–7.7.7 and 7.14–7.14.2), Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2000, §§5.5, 6.5–6.7), Gröbner and Hofreiter (1950, pp. 197–203), Luke (1962), Magnus et al. (1966, §3.8), Marichev (1983, pp. 191–216), Oberhettinger (1972), Oberhettinger (1974, §§1.11 and 2.7), Oberhettinger (1990, §§1.17–1.20 and 2.17–2.20), Oberhettinger and Badii (1973, §§1.15 and 2.13), Okui (1974, 1975), Prudnikov et al. (1986b, §§1.11–1.12, 2.15–2.16, 3.2.8–3.2.10, and 3.4.1), Prudnikov et al. (1992a, §§3.15, 3.16), Prudnikov et al. (1992b, §§3.15, 3.16), Watson (1944, Chapter 13), and Wheelon (1968).
24: Bibliography S
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri, and D. K. Hoffman (1992) Numerical evaluation of spherical Bessel transforms via fast Fourier transforms. J. Comput. Phys. 100 (2), pp. 294–296.
  • A. Sidi (1985) Asymptotic expansions of Mellin transforms and analogues of Watson’s lemma. SIAM J. Math. Anal. 16 (4), pp. 896–906.
  • A. Sidi (2011) Asymptotic expansion of Mellin transforms in the complex plane. Int. J. Pure Appl. Math. 71 (3), pp. 465–480.
  • R. S. Strichartz (1994) A Guide to Distribution Theory and Fourier Transforms. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL.
  • 25: Bibliography P
  • B. V. Paltsev (1999) On two-sided estimates, uniform with respect to the real argument and index, for modified Bessel functions. Mat. Zametki 65 (5), pp. 681–692 (Russian).
  • R. B. Paris and D. Kaminski (2001) Asymptotics and Mellin-Barnes Integrals. Cambridge University Press, Cambridge.
  • R. B. Paris (1992b) Smoothing of the Stokes phenomenon using Mellin-Barnes integrals. J. Comput. Appl. Math. 41 (1-2), pp. 117–133.
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • A. Pinkus and S. Zafrany (1997) Fourier Series and Integral Transforms. Cambridge University Press, Cambridge.
  • 26: 16.5 Integral Representations and Integrals
    Suppose first that L is a contour that starts at infinity on a line parallel to the positive real axis, encircles the nonnegative integers in the negative sense, and ends at infinity on another line parallel to the positive real axis. … Secondly, suppose that L is a contour from i to i . … Lastly, the restrictions on the parameters can be eased by replacing the integration paths with loop contours; see Luke (1969a, §3.6). Laplace transforms and inverse Laplace transforms of generalized hypergeometric functions are given in Prudnikov et al. (1992a, §3.38) and Prudnikov et al. (1992b, §3.36). …
    27: 10.22 Integrals
    §10.22(v) Hankel Transform
    The Hankel transform (or Bessel transform) of a function f ( x ) is defined as … For collections of Hankel transforms see Erdélyi et al. (1954b, Chapter 8) and Oberhettinger (1972). The following two formulas are generalizations of the Hankel transform. …This is the Weber transform. …
    28: Errata
    The specific updates to Chapter 18 include some results for general orthogonal polynomials including quadratic transformations, uniqueness of orthogonality measure and completeness, moments, continued fractions, and some special classes of orthogonal polynomials. …
  • Subsection 19.25(vi)

    The Weierstrass lattice roots e j , were linked inadvertently as the base of the natural logarithm. In order to resolve this inconsistency, the lattice roots e j , and lattice invariants g 2 , g 3 , now link to their respective definitions (see §§23.2(i), 23.3(i)).

    Reported by Felix Ospald.

  • Paragraph Mellin–Barnes Integrals (in §8.6(ii))

    The descriptions for the paths of integration of the Mellin-Barnes integrals (8.6.10)–(8.6.12) have been updated. The description for (8.6.11) now states that the path of integration is to the right of all poles. Previously it stated incorrectly that the path of integration had to separate the poles of the gamma function from the pole at s = 0 . The paths of integration for (8.6.10) and (8.6.12) have been clarified. In the case of (8.6.10), it separates the poles of the gamma function from the pole at s = a for γ ( a , z ) . In the case of (8.6.12), it separates the poles of the gamma function from the poles at s = 0 , 1 , 2 , .

    Reported 2017-07-10 by Kurt Fischer.

  • Section 1.14

    There have been extensive changes in the notation used for the integral transforms defined in §1.14. These changes are applied throughout the DLMF. The following table summarizes the changes.

    Transform New Abbreviated Old
    Notation Notation Notation
    Fourier ( f ) ( x ) f ( x )
    Fourier Cosine c ( f ) ( x ) c f ( x )
    Fourier Sine s ( f ) ( x ) s f ( x )
    Laplace ( f ) ( s ) f ( s ) ( f ( t ) ; s )
    Mellin ( f ) ( s ) f ( s ) ( f ; s )
    Hilbert ( f ) ( s ) f ( s ) ( f ; s )
    Stieltjes 𝒮 ( f ) ( s ) 𝒮 f ( s ) 𝒮 ( f ; s )

    Previously, for the Fourier, Fourier cosine and Fourier sine transforms, either temporary local notations were used or the Fourier integrals were written out explicitly.

  • Section 17.9

    The title was changed from Transformations of Higher ϕ r r Functions to Further Transformations of ϕ r r + 1 Functions.

  • 29: 14.17 Integrals
    14.17.7 1 1 𝖯 l m ( x ) 𝖯 n m ( x ) d x = ( 1 ) m l + 1 2 δ l , n ,
    §14.17(v) Laplace Transforms
    For Laplace transforms and inverse Laplace transforms involving associated Legendre functions, see Erdélyi et al. (1954a, pp. 179–181, 270–272), Oberhettinger and Badii (1973, pp. 113–118, 317–324), Prudnikov et al. (1992a, §§3.22, 3.32, and 3.33), and Prudnikov et al. (1992b, §§3.20, 3.30, and 3.31).
    §14.17(vi) Mellin Transforms
    For Mellin transforms involving associated Legendre functions see Oberhettinger (1974, pp. 69–82) and Marichev (1983, pp. 247–283), and for inverse transforms see Oberhettinger (1974, pp. 205–215).
    30: 12.5 Integral Representations
    12.5.4 U ( a , z ) = 2 π e 1 4 z 2 0 t a 1 2 e 1 2 t 2 cos ( z t + ( 1 2 a + 1 4 ) π ) d t , a < 1 2 .
    The following integrals correspond to those of §12.5(i). …
    §12.5(iii) Mellin–Barnes Integrals
    12.5.8 U ( a , z ) = e 1 4 z 2 z a 1 2 2 π i Γ ( 1 2 + a ) i i Γ ( t ) Γ ( 1 2 + a 2 t ) 2 t z 2 t d t , a 1 2 , 3 2 , 5 2 , , | ph z | < 3 4 π ,
    12.5.9 V ( a , z ) = 2 π e 1 4 z 2 z a 1 2 2 π i Γ ( 1 2 a ) i i Γ ( t ) Γ ( 1 2 a 2 t ) 2 t z 2 t cos ( π t ) d t , a 1 2 , 3 2 , 5 2 , , | ph z | < 1 4 π ,