17.8 Special Cases of \mathop{{{}_{{r}}\psi _{{r}}}\/}\nolimits Functions17.10 Transformations of \mathop{{{}_{{r}}\psi _{{r}}}\/}\nolimits Functions

§17.9 Transformations of Higher \mathop{{{}_{{r}}\phi _{{r}}}\/}\nolimits Functions

Contents

§17.9(ii) \mathop{{{}_{{3}}\phi _{{2}}}\/}\nolimits\to\mathop{{{}_{{3}}\phi _{{2}}}\/}\nolimits

§17.9(iii) Further \mathop{{{}_{{r}}\phi _{{s}}}\/}\nolimits Functions

Watson’s q-Analog of Whipple’s Theorem

With n a nonnegative integer

Bailey’s Transformation of Very-Well-Poised \mathop{{{}_{{8}}\phi _{{7}}}\/}\nolimits

Sears–Carlitz Transformation

Gasper’s q-Analog of Clausen’s Formula

17.9.18\left(\mathop{{{}_{{4}}\phi _{{3}}}\/}\nolimits\!\left({a,b,abz,ab/z\atop abq^{{\frac{1}{2}}},-abq^{{\frac{1}{2}}},-ab};q,q\right)\right)^{2}=\mathop{{{}_{{5}}\phi _{{4}}}\/}\nolimits\!\left({a^{2},b^{2},ab,abz,ab/z\atop abq^{{\frac{1}{2}}},-abq^{{\frac{1}{2}}},-ab,a^{2}b^{2}};q,q\right),

provided that the series expansions of both \phi’s terminate.