About the Project

.币安法国球队网址『世界杯佣金分红55%,咨询专员:@ky975』.uiq.k2q1w9-2022年11月29日1时52分6秒maooc00kk

AdvancedHelp

(0.004 seconds)

11—20 of 305 matching pages

11: William P. Reinhardt
Older work on the scattering theory of the atomic Coulomb problem led to the discovery of new classes of orthogonal polynomials relating to the spectral theory of Schrödinger operators, and new uses of old ones: this work was strongly motivated by his original ownership of a 1964 hard copy printing of the original AMS 55 NBS Handbook of Mathematical Functions. …
12: Bibliography
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • F. Alhargan and S. Judah (1995) A general mode theory for the elliptic disk microstrip antenna. IEEE Trans. Antennas and Propagation 43 (6), pp. 560–568.
  • V. I. Arnol’d (1974) Normal forms of functions in the neighborhood of degenerate critical points. Uspehi Mat. Nauk 29 (2(176)), pp. 11–49 (Russian).
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • R. Askey (1980) Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal. 11 (6), pp. 938–951.
  • 13: 4.24 Inverse Trigonometric Functions: Further Properties
    4.24.1 arcsin z = z + 1 2 z 3 3 + 1 3 2 4 z 5 5 + 1 3 5 2 4 6 z 7 7 + , | z | 1 .
    14: Bibliography N
  • A. Nakamura (1996) Toda equation and its solutions in special functions. J. Phys. Soc. Japan 65 (6), pp. 1589–1597.
  • D. Naylor (1984) On simplified asymptotic formulas for a class of Mathieu functions. SIAM J. Math. Anal. 15 (6), pp. 1205–1213.
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
  • 15: Bibliography C
  • M. A. Chaudhry and S. M. Zubair (1994) Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 55 (1), pp. 99–124.
  • J. A. Cochran (1963) Further formulas for calculating approximate values of the zeros of certain combinations of Bessel functions. IEEE Trans. Microwave Theory Tech. 11 (6), pp. 546–547.
  • J. N. L. Connor (1976) Catastrophes and molecular collisions. Molecular Phys. 31 (1), pp. 33–55.
  • F. Cooper, A. Khare, and A. Saxena (2006) Exact elliptic compactons in generalized Korteweg-de Vries equations. Complexity 11 (6), pp. 30–34.
  • A. Csótó and G. M. Hale (1997) S -matrix and R -matrix determination of the low-energy He 5 and Li 5 resonance parameters. Phys. Rev. C 55 (1), pp. 536–539.
  • 16: Bibliography L
  • A. Leitner and J. Meixner (1960) Eine Verallgemeinerung der Sphäroidfunktionen. Arch. Math. 11, pp. 29–39.
  • L. Lorch and P. Szegő (1963) Higher monotonicity properties of certain Sturm-Liouville functions.. Acta Math. 109, pp. 55–73.
  • H. Lotsch and M. Gray (1964) Algorithm 244: Fresnel integrals. Comm. ACM 7 (11), pp. 660–661.
  • N. A. Lukaševič (1967b) On the theory of Painlevé’s third equation. Differ. Uravn. 3 (11), pp. 1913–1923 (Russian).
  • Y. L. Luke (1977a) Algorithms for rational approximations for a confluent hypergeometric function. Utilitas Math. 11, pp. 123–151.
  • 17: 3.9 Acceleration of Convergence
    Table 3.9.1: Shanks’ transformation for s n = j = 1 n ( 1 ) j + 1 j 2 .
    n t n , 2 t n , 4 t n , 6 t n , 8 t n , 10
    2 0.82111 11111 11 0.82243 44785 14 0.82246 61821 45 0.82246 70102 48 0.82246 70327 79
    6 0.82239 19390 77 0.82246 61352 37 0.82246 70190 76 0.82246 70331 54 0.82246 70334 18
    For examples and other transformations for convergent sequences and series, see Wimp (1981, pp. 156–199), Brezinski and Redivo Zaglia (1991, pp. 55–72), and Sidi (2003, Chapters 6, 12–13, 15–16, 19–24, and pp. 483–492). …
    18: 10.60 Sums
    For further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000). … See also Watson (1944, Chapters 11 and 16).
    19: Bibliography K
  • A. Kalähne (1907) Über die Wurzeln einiger Zylinderfunktionen und gewisser aus ihnen gebildeter Gleichungen. Zeitschrift für Mathematik und Physik 54, pp. 55–86 (German).
  • E. L. Kaplan (1948) Auxiliary table for the incomplete elliptic integrals. J. Math. Physics 27, pp. 11–36.
  • M. K. Kerimov and S. L. Skorokhodov (1985b) Calculation of the complex zeros of Hankel functions and their derivatives. Zh. Vychisl. Mat. i Mat. Fiz. 25 (11), pp. 1628–1643, 1741.
  • M. K. Kerimov and S. L. Skorokhodov (1987) On the calculation of the multiple complex roots of the derivatives of cylindrical Bessel functions. Zh. Vychisl. Mat. i Mat. Fiz. 27 (11), pp. 1628–1639, 1758.
  • K. S. Kölbig (1968) Algorithm 327: Dilogarithm [S22]. Comm. ACM 11 (4), pp. 270–271.
  • 20: Bibliography D
  • P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou (1999b) Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 (11), pp. 1335–1425.
  • E. Dorrer (1968) Algorithm 322. F-distribution. Comm. ACM 11 (2), pp. 116–117.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • B. Dubrovin and M. Mazzocco (2000) Monodromy of certain Painlevé-VI transcendents and reflection groups. Invent. Math. 141 (1), pp. 55–147.
  • J. Dutka (1981) The incomplete beta function—a historical profile. Arch. Hist. Exact Sci. 24 (1), pp. 1129.