# triple

(0.001 seconds)

## 1—10 of 13 matching pages

##### 1: 34.13 Methods of Computation
For $\mathit{9j}$ symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). …
##### 2: 20.12 Mathematical Applications
For applications of Jacobi’s triple product (20.5.9) to Ramanujan’s $\tau\left(n\right)$ function and Euler’s pentagonal numbers see Hardy and Wright (1979, pp. 132–160) and McKean and Moll (1999, pp. 143–145). …
##### 4: 34.6 Definition: $\mathit{9j}$ Symbol
The $\mathit{9j}$ symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
##### 7: Bibliography R
• H. Rosengren (1999) Another proof of the triple sum formula for Wigner $9j$-symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
• ##### 8: 22.4 Periods, Poles, and Zeros
This half-period will be plus or minus a member of the triple ${K,iK^{\prime},K+iK^{\prime}}$; the other two members of this triple are quarter periods of $\operatorname{pq}\left(z,k\right)$. …
##### 9: 1.5 Calculus of Two or More Variables
###### Triple Integrals
1.5.43 $\iiint_{D}f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iiint_{D^{*}}f(x(u,v,w),y% (u,v,w),z(u,v,w))\*\left|\frac{\partial(x,y,z)}{\partial(u,v,w)}\right|\mathrm% {d}u\mathrm{d}v\mathrm{d}w.$
##### 10: 1.6 Vectors and Vector-Valued Functions
1.6.58 $\iiint_{V}(\nabla\cdot\mathbf{F})\mathrm{d}V=\iint_{S}\mathbf{F}\cdot\mathrm{d% }\mathbf{S},$
1.6.59 $\iiint_{V}(f\nabla^{2}g+\nabla f\cdot\nabla g)\mathrm{d}V=\iint_{S}f\frac{% \partial g}{\partial n}\mathrm{d}A,$
1.6.60 $\iiint_{V}(f\nabla^{2}g-g\nabla^{2}f)\mathrm{d}V=\iint_{S}\left(f\frac{% \partial g}{\partial n}-g\frac{\partial f}{\partial n}\right)\mathrm{d}A,$