Laplace transform
(0.001 seconds)
1—10 of 45 matching pages
1: 1.14 Integral Transforms
2: 35.2 Laplace Transform
§35.2 Laplace Transform
►Definition
… ►Inversion Formula
… ►Convolution Theorem
►If is the Laplace transform of , , then is the Laplace transform of the convolution , where …3: 16.20 Integrals and Series
…
►Extensive lists of Laplace transforms and inverse Laplace transforms of the Meijer -function are given in Prudnikov et al. (1992a, §3.40) and Prudnikov et al. (1992b, §3.38).
…
4: 19.13 Integrals of Elliptic Integrals
…
►
§19.13(iii) Laplace Transforms
►For direct and inverse Laplace transforms for the complete elliptic integrals , , and see Prudnikov et al. (1992a, §3.31) and Prudnikov et al. (1992b, §§3.29 and 4.3.33), respectively.5: 2.5 Mellin Transform Methods
…
►
§2.5(iii) Laplace Transforms with Small Parameters
… ►
2.5.37
…
►
2.5.38
…
►
2.5.45
.
…
►
2.5.49
…
6: 15.14 Integrals
…
►Laplace transforms of hypergeometric functions are given in Erdélyi et al. (1954a, §4.21), Oberhettinger and Badii (1973, §1.19), and Prudnikov et al. (1992a, §3.37).
Inverse Laplace transforms of hypergeometric functions are given in Erdélyi et al. (1954a, §5.19), Oberhettinger and Badii (1973, §2.18), and Prudnikov et al. (1992b, §3.35).
…
7: 6.14 Integrals
…
►
§6.14(i) Laplace Transforms
…8: 7.14 Integrals
9: 3.11 Approximation Techniques
…
►
Laplace Transform Inversion
►Numerical inversion of the Laplace transform (§1.14(iii)) ►
3.11.26
►requires to be obtained from numerical values of .
A general procedure is to approximate by a rational function (vanishing at infinity) and then approximate by .
…