# indefinite

(0.000 seconds)

## 1—10 of 18 matching pages

##### 1: 19.13 Integrals of Elliptic Integrals
For definite and indefinite integrals of complete elliptic integrals see Byrd and Friedman (1971, pp. 610–612, 615), Prudnikov et al. (1990, §§1.11, 2.16), Glasser (1976), Bushell (1987), and Cvijović and Klinowski (1999). For definite and indefinite integrals of incomplete elliptic integrals see Byrd and Friedman (1971, pp. 613, 616), Prudnikov et al. (1990, §§1.10.2, 2.15.2), and Cvijović and Klinowski (1994). …
##### 2: 12.15 Generalized Parabolic Cylinder Functions
This equation arises in the study of non-self-adjoint elliptic boundary-value problems involving an indefinite weight function. …
##### 3: 22.14 Integrals
###### §22.14(ii) Indefinite Integrals of Powers of Jacobian Elliptic Functions
The indefinite integral of the 3rd power of a Jacobian function can be expressed as an elementary function of Jacobian functions and a product of Jacobian functions. …
##### 4: 4.40 Integrals
###### §4.40(ii) Indefinite Integrals
Extensive compendia of indefinite and definite integrals of hyperbolic functions include Apelblat (1983, pp. 96–109), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 139–160), Gröbner and Hofreiter (1950, pp. 160–167), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.4, 1.8, 2.4, 2.8).
##### 6: 11.7 Integrals and Sums
###### §11.7(i) Indefinite Integrals
11.7.6 $f_{\nu+1}(z)=(2\nu+1)f_{\nu}(z)-z^{\nu+1}\mathbf{H}_{\nu}\left(z\right)+\frac{% (\tfrac{1}{2}z^{2})^{\nu+1}}{(\nu+1)\sqrt{\pi}\Gamma\left(\nu+\tfrac{3}{2}% \right)},$ $\Re\nu>-1$.
##### 7: 4.26 Integrals
###### §4.26(ii) Indefinite Integrals
Extensive compendia of indefinite and definite integrals of trigonometric and inverse trigonometric functions include Apelblat (1983, pp. 48–109), Bierens de Haan (1939), Gradshteyn and Ryzhik (2000, Chapters 2–4), Gröbner and Hofreiter (1949, pp. 116–139), Gröbner and Hofreiter (1950, pp. 94–160), and Prudnikov et al. (1986a, §§1.5, 1.7, 2.5, 2.7).
##### 10: 9.11 Products
###### §9.11(iv) Indefinite Integrals
9.11.19 $\int_{0}^{\infty}\frac{\,\mathrm{d}t}{{\operatorname{Ai}}^{2}\left(t\right)+{% \operatorname{Bi}}^{2}\left(t\right)}=\int_{0}^{\infty}\frac{t\,\mathrm{d}t}{{% \operatorname{Ai}'}^{2}\left(t\right)+{\operatorname{Bi}'}^{2}\left(t\right)}=% \frac{\pi^{2}}{6}.$