About the Project

Weber transform

AdvancedHelp

(0.001 seconds)

1—10 of 19 matching pages

1: 10.22 Integrals
10.22.44 0 t μ Y ν ( t ) d t = 2 μ π Γ ( 1 2 μ + 1 2 ν + 1 2 ) Γ ( 1 2 μ 1 2 ν + 1 2 ) sin ( 1 2 μ 1 2 ν ) π , ( μ ± ν ) > 1 , μ < 1 2 .
10.22.47 0 t ν Y ν ( a t ) t 2 + b 2 d t = b ν 1 K ν ( a b ) , a > 0 , b > 0 , 1 2 < ν < 5 2 .
10.22.75 0 Y ν ( a t ) J ν ( b t ) J ν ( c t ) t 1 + ν d t = { ( a b c ) ν ( A ) ν 1 2 π 1 2 2 ν + 1 Γ ( 1 2 ν ) , 0 < a < | b c | , 0 , | b c | < a < b + c , ( a b c ) ν ( A ) ν 1 2 π 1 2 2 ν + 1 Γ ( 1 2 ν ) , a > b + c .
10.22.78 f ( x ) = 0 ( x t ) 1 2 J ν ( x t ) Y ν ( a t ) Y ν ( x t ) J ν ( a t ) J ν 2 ( a t ) + Y ν 2 ( a t ) a ( y t ) 1 2 ( J ν ( y t ) Y ν ( a t ) Y ν ( y t ) J ν ( a t ) ) f ( y ) d y d t , a > 0 .
This is the Weber transform. …
2: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
For generalizations see the Weber transform (10.22.78) and an extended Bessel transform (10.22.79). …
3: 10.1 Special Notation
For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
4: 2.8 Differential Equations with a Parameter
First we apply the Liouville transformation1.13(iv)) to (2.8.1). … The transformed equation has the form … The transformed differential equation is … The transformed differential equation is … For J ν and Y ν see §10.2(ii). …
5: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • D. Naylor (1990) On an asymptotic expansion of the Kontorovich-Lebedev transform. Applicable Anal. 39 (4), pp. 249–263.
  • D. Naylor (1996) On an asymptotic expansion of the Kontorovich-Lebedev transform. Methods Appl. Anal. 3 (1), pp. 98–108.
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • 6: Guide to Searching the DLMF
    Table 1: Query Examples
    Query Matching records contain
    "Fourier transform" and series both the phrase “Fourier transform” and the word “series”.
    Fourier (transform or series) at least one of “Fourier transform” or “Fourier series”.
    1/(2pi) and "Fourier transform" both 1 / ( 2 π ) and the phrase “Fourier transform”.
    BesselJ_nu and BesselY_nu both the Bessel functions J ν and Y ν .
    7: Bibliography S
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • J. D. Secada (1999) Numerical evaluation of the Hankel transform. Comput. Phys. Comm. 116 (2-3), pp. 278–294.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • H. Shanker (1940b) On certain integrals and expansions involving Weber’s parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 4, pp. 158–166.
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri, and D. K. Hoffman (1992) Numerical evaluation of spherical Bessel transforms via fast Fourier transforms. J. Comput. Phys. 100 (2), pp. 294–296.
  • 8: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • C. Van Loan (1992) Computational Frameworks for the Fast Fourier Transform. Frontiers in Applied Mathematics, Vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • R. Vidūnas (2005) Transformations of some Gauss hypergeometric functions. J. Comput. Appl. Math. 178 (1-2), pp. 473–487.
  • N. Ja. Vilenkin and A. U. Klimyk (1991) Representation of Lie Groups and Special Functions. Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 72, Kluwer Academic Publishers Group, Dordrecht.
  • 9: Bibliography Z
  • R. Zanovello (1977) Integrali di funzioni di Anger, Weber ed Airy-Hardy. Rend. Sem. Mat. Univ. Padova 58, pp. 275–285 (Italian).
  • A. H. Zemanian (1987) Distribution Theory and Transform Analysis, An Introduction and Generalized Functions with Applications. Dover, New York.
  • Q. Zheng (1997) Generalized Watson Transforms and Applications to Group Representations. Ph.D. Thesis, University of Vermont, Burlington,VT.
  • Ya. M. Zhileĭkin and A. B. Kukarkin (1995) A fast Fourier-Bessel transform algorithm. Zh. Vychisl. Mat. i Mat. Fiz. 35 (7), pp. 1128–1133 (Russian).
  • 10: 13.8 Asymptotic Approximations for Large Parameters
    When the foregoing results are combined with Kummer’s transformation (13.2.39), an approximation is obtained for the case when | b | is large, and | b a | and | z | are bounded. … For the case b > 1 the transformation (13.2.40) can be used. …
    13.8.10 U ( a , b , x ) = Γ ( 1 2 b a + 1 2 ) e 1 2 x x 1 2 1 2 b ( cos ( a π ) J b 1 ( 2 x ( b 2 a ) ) sin ( a π ) Y b 1 ( 2 x ( b 2 a ) ) + env Y b 1 ( 2 x ( b 2 a ) ) O ( | a | 1 2 ) ) ,
    where C ν ( a , ζ ) = cos ( π a ) J ν ( ζ ) + sin ( π a ) Y ν ( ζ ) and …