About the Project
NIST

Hankel inversion theorem

AdvancedHelp

(0.002 seconds)

3 matching pages

1: 10.22 Integrals
Hankel’s inversion theorem is given by
10.22.77 f ( y ) = 0 g ( x ) J ν ( x y ) ( x y ) 1 2 d x .
2: Bibliography C
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • L. Carlitz (1961b) The Staudt-Clausen theorem. Math. Mag. 34, pp. 131–146.
  • B. C. Carlson (1978) Short proofs of three theorems on elliptic integrals. SIAM J. Math. Anal. 9 (3), pp. 524–528.
  • N. B. Christensen (1990) Optimized fast Hankel transform filters. Geophysical Prospecting 38 (5), pp. 545–568.
  • F. Clarke (1989) The universal von Staudt theorems. Trans. Amer. Math. Soc. 315 (2), pp. 591–603.
  • 3: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • P. Ribenboim (1979) 13 Lectures on Fermat’s Last Theorem. Springer-Verlag, New York.
  • K. Rottbrand (2000) Finite-sum rules for Macdonald’s functions and Hankel’s symbols. Integral Transform. Spec. Funct. 10 (2), pp. 115–124.
  • G. B. Rybicki (1989) Dawson’s integral and the sampling theorem. Computers in Physics 3 (2), pp. 85–87.