About the Project

Jacobi zeta function

AdvancedHelp

(0.007 seconds)

11—20 of 33 matching pages

11: 22.15 Inverse Functions
22.15.3 dn ( ζ , k ) = x , k x 1 ,
12: 23.6 Relations to Other Functions
23.6.27 ζ ( z | 𝕃 1 ) ζ ( z + 2 K | 𝕃 1 ) + ζ ( 2 K | 𝕃 1 ) = ns ( z , k ) ,
23.6.29 ζ ( z | 𝕃 3 ) ζ ( z + 2 i K | 𝕃 3 ) ζ ( 2 i K | 𝕃 3 ) = cs ( z , k ) .
13: 31.2 Differential Equations
31.2.8 d 2 w d ζ 2 + ( ( 2 γ 1 ) cn ζ dn ζ sn ζ ( 2 δ 1 ) sn ζ dn ζ cn ζ ( 2 ϵ 1 ) k 2 sn ζ cn ζ dn ζ ) d w d ζ + 4 k 2 ( α β sn 2 ζ q ) w = 0 .
14: Bibliography E
  • H. M. Edwards (1974) Riemann’s Zeta Function. Academic Press, New York-London.
  • E. Elizalde (1986) An asymptotic expansion for the first derivative of the generalized Riemann zeta function. Math. Comp. 47 (175), pp. 347–350.
  • E. Elizalde (1995) Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics. New Series m: Monographs, Vol. 35, Springer-Verlag, Berlin.
  • D. Elliott (1971) Uniform asymptotic expansions of the Jacobi polynomials and an associated function. Math. Comp. 25 (114), pp. 309–315.
  • J. A. Ewell (1990) A new series representation for ζ ( 3 ) . Amer. Math. Monthly 97 (3), pp. 219–220.
  • 15: 5.16 Sums
    §5.16 Sums
    5.16.2 k = 1 1 k ψ ( k + 1 ) = ζ ( 3 ) = 1 2 ψ ′′ ( 1 ) .
    For further sums involving the psi function see Hansen (1975, pp. 360–367). For sums of gamma functions see Andrews et al. (1999, Chapters 2 and 3) and §§15.2(i), 16.2. For related sums involving finite field analogs of the gamma and beta functions (Gauss and Jacobi sums) see Andrews et al. (1999, Chapter 1) and Terras (1999, pp. 90, 149).
    16: 20.9 Relations to Other Functions
    §20.9 Relations to Other Functions
    §20.9(i) Elliptic Integrals
    §20.9(ii) Elliptic Functions and Modular Functions
    The relations (20.9.1) and (20.9.2) between k and τ (or q ) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485). …
    §20.9(iii) Riemann Zeta Function
    17: Bibliography C
  • L. Carlitz (1961a) A recurrence formula for ζ ( 2 n ) . Proc. Amer. Math. Soc. 12 (6), pp. 991–992.
  • B. K. Choudhury (1995) The Riemann zeta-function and its derivatives. Proc. Roy. Soc. London Ser. A 450, pp. 477–499.
  • W. J. Cody, K. E. Hillstrom, and H. C. Thacher (1971) Chebyshev approximations for the Riemann zeta function. Math. Comp. 25 (115), pp. 537–547.
  • M. W. Coffey (2008) On some series representations of the Hurwitz zeta function. J. Comput. Appl. Math. 216 (1), pp. 297–305.
  • M. W. Coffey (2009) An efficient algorithm for the Hurwitz zeta and related functions. J. Comput. Appl. Math. 225 (2), pp. 338–346.
  • 18: 15.12 Asymptotic Approximations
    where … See also Dunster (1999) where the asymptotics of Jacobi polynomials is described; compare (15.9.1). … with the branch chosen to be continuous and β > 0 when ζ > 0 . Also, …where …
    19: 25.5 Integral Representations
    §25.5 Integral Representations
    §25.5(i) In Terms of Elementary Functions
    §25.5(ii) In Terms of Other Functions
    For θ 3 see §20.2(i). …
    §25.5(iii) Contour Integrals
    20: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
    §22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
    22.12.2 2 K k sn ( 2 K t , k ) = n = π sin ( π ( t ( n + 1 2 ) τ ) ) = n = ( m = ( 1 ) m t m ( n + 1 2 ) τ ) ,
    22.12.8 2 K dc ( 2 K t , k ) = n = π sin ( π ( t + 1 2 n τ ) ) = n = ( m = ( 1 ) m t + 1 2 m n τ ) ,
    22.12.11 2 K ns ( 2 K t , k ) = n = π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m t m n τ ) ,
    22.12.12 2 K ds ( 2 K t , k ) = n = ( 1 ) n π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m + n t m n τ ) ,