About the Project

.中国体育彩票足球『网址:687.vii』世界杯塞尔维亚对智利_b5p6v3_vd7lhp.hk

AdvancedHelp

(0.004 seconds)

11—20 of 773 matching pages

11: 8.21 Generalized Sine and Cosine Integrals
For 𝗃 n ( z ) see §10.47(ii). …
§8.21(vii) Auxiliary Functions
8.21.22 f ( a , z ) = 0 sin t ( t + z ) 1 a d t ,
8.21.23 g ( a , z ) = 0 cos t ( t + z ) 1 a d t .
8.21.24 f ( a , z ) = z a 2 0 ( ( 1 + i t ) a 1 + ( 1 i t ) a 1 ) e z t d t ,
12: 18.16 Zeros
Let j α , m be the m th positive zero of the Bessel function J α ( x ) 10.21(i)). … Let ϕ m = j α , m / ρ . … For m = 1 , 2 , , n , and with j α , m as in §18.16(ii), … In the notation of this reference x n , m = u a , m , μ = 2 n + 1 , and α = μ 4 3 a m . …
§18.16(vii) Discriminants
13: Bibliography I
  • M. Ikonomou, P. Köhler, and A. F. Jacob (1995) Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines. Z. Angew. Math. Mech. 75 (12), pp. 917–926.
  • A. Iserles, S. P. Nørsett, and S. Olver (2006) Highly Oscillatory Quadrature: The Story So Far. In Numerical Mathematics and Advanced Applications, A. Bermudez de Castro and others (Eds.), pp. 97–118.
  • M. E. H. Ismail and D. R. Masson (1994) q -Hermite polynomials, biorthogonal rational functions, and q -beta integrals. Trans. Amer. Math. Soc. 346 (1), pp. 63–116.
  • M. E. H. Ismail (2009) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.
  • 14: 1.10 Functions of a Complex Variable
    Let f 1 ( z ) be analytic in a domain D 1 . … Then …
    §1.10(vii) Inverse Functions
    Suppose that …Let w 0 = f ( z 0 ) . …
    15: 32.7 Bäcklund Transformations
    satisfies P V  with …
    §32.7(vii) Sixth Painlevé Equation
    Let w j ( z j ) = w j ( z j ; α j , β j , γ j , δ j ) , j = 0 , 1 , 2 , 3 , be solutions of P VI  with … P VI  also has quadratic and quartic transformations. …Also, …
    16: Bibliography Q
  • C. K. Qu and R. Wong (1999) “Best possible” upper and lower bounds for the zeros of the Bessel function J ν ( x ) . Trans. Amer. Math. Soc. 351 (7), pp. 2833–2859.
  • 17: 8.17 Incomplete Beta Functions
    For a historical profile of B x ( a , b ) see Dutka (1981). … where …The 4 m and 4 m + 1 convergents are less than I x ( a , b ) , and the 4 m + 2 and 4 m + 3 convergents are greater than I x ( a , b ) . … For x > ( a + 1 ) / ( a + b + 2 ) or 1 x < ( b + 1 ) / ( a + b + 2 ) , more rapid convergence is obtained by computing I 1 x ( b , a ) and using (8.17.4). …
    §8.17(vii) Addendum to 8.17(i) Definitions and Basic Properties
    18: Bibliography T
  • N. M. Temme (1993) Asymptotic estimates of Stirling numbers. Stud. Appl. Math. 89 (3), pp. 233–243.
  • J. S. Thompson (1996) High Speed Numerical Integration of Fermi Dirac Integrals. Master’s Thesis, Naval Postgraduate School, Monterey, CA.
  • E. C. Titchmarsh (1962b) The Theory of Functions. 2nd edition, Oxford University Press, Oxford.
  • L. N. Trefethen and D. Bau (1997) Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • 19: 12.10 Uniform Asymptotic Expansions for Large Parameter
    These cases are treated in §§12.10(vii)12.10(viii). … Higher polynomials u s ( t ) can be calculated from the recurrence relation …and the v s ( t ) then follow from …
    §12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
    The coefficients A s ( ζ ) and B s ( ζ ) are given by …
    20: 28.4 Fourier Series
    §28.4(vii) Asymptotic Forms for Large m
    28.4.24 A 2 m 2 n ( q ) A 0 2 n ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m π ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n ( q ) , q ) ,
    28.4.25 A 2 m + 1 2 n + 1 ( q ) A 1 2 n + 1 ( q ) = ( 1 ) m + 1 ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n + 1 ( q ) , q ) ,
    28.4.26 B 2 m + 1 2 n + 1 ( q ) B 1 2 n + 1 ( q ) = ( 1 ) m ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w I ( 1 2 π ; b 2 n + 1 ( q ) , q ) ,
    For the basic solutions w I and w II see §28.2(ii).